Pulsar in the context of "Density"

Play Trivia Questions online!

or

Skip to study material about Pulsar in the context of "Density"

Ad spacer

⭐ Core Definition: Pulsar

A pulsar (pulsating star, on the model of quasar) is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth (similar to the way a lighthouse can be seen only when the light is pointed in the direction of an observer), and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays (see also centrifugal mechanism of acceleration).

Pulsars’ highly regular pulses make them very useful tools for astronomers. For example, observations of a pulsar in a binary neutron star system were used to indirectly confirm the existence of gravitational radiation. The first extrasolar planets were discovered in 1992 around a pulsar, specifically PSR B1257+12. In 1983, certain types of pulsars were detected that, at that time, exceeded the accuracy of atomic clocks in keeping time.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Pulsar in the context of Astronomy

Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry to explain their origin and their overall evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroids, asteroids, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is the branch of astronomy that studies the universe as a whole.

Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Egyptians, Babylonians, Greeks, Indians, Chinese, Maya, and many ancient indigenous peoples of the Americas. In the past, astronomy included disciplines as diverse as astrometry, celestial navigation, observational astronomy, and the making of calendars.

↑ Return to Menu

Pulsar in the context of Exoplanet

An exoplanet or extrasolar planet is a planet outside of the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first detected in 1988, was confirmed in 2003. In 2016, it was recognized that the first possible evidence of an exoplanet had been noted in 1917. As of 30 October 2025, there are 6,042 confirmed exoplanets in 4,501 planetary systems, with 1,020 systems having more than one planet.

There are many methods of detecting exoplanets. Transit photometry and Doppler spectroscopy have found the most, but these methods suffer from a clear observational bias favoring the detection of planets near the star; thus, 85% of the exoplanets detected are inside the tidal locking zone. About 1 in 5 Sun-like stars are estimated to have an "Earth-sized" planet in the habitable zone. Assuming there are 200 billion stars in the Milky Way, it can be hypothesized that there are 11 billion potentially habitable Earth-sized planets in the Milky Way, rising to 40 billion if planets orbiting the numerous red dwarfs are included.

↑ Return to Menu

Pulsar in the context of Neutron star

A neutron star is the gravitationally collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of atomic nuclei. Surpassed only by black holes, neutron stars are the second smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 miles) and a mass of about 1.4 solar masses (M). Stars that collapse into neutron stars have a total mass of between 10 and 25 M or possibly more for those that are especially rich in elements heavier than hydrogen and helium.

Once formed, neutron stars no longer actively generate heat and cool over time, but they may still evolve further through collisions or accretion. Most of the basic models for these objects imply that they are composed almost entirely of neutrons, as the extreme pressure causes the electrons and protons present in normal matter to combine into additional neutrons. These stars are partially supported against further collapse by neutron degeneracy pressure, just as white dwarfs are supported against collapse by electron degeneracy pressure. However, this is not by itself sufficient to hold up an object beyond 0.7 M and repulsive nuclear forces increasingly contribute to supporting more massive neutron stars. If the remnant star has a mass exceeding the Tolman–Oppenheimer–Volkoff limit, approximately 2.2 to 2.9 M, the combination of degeneracy pressure and nuclear forces is insufficient to support the neutron star, causing it to collapse and form a black hole. The most massive neutron star detected so far, PSR J0952–0607, is estimated to be 2.35±0.17 M.

↑ Return to Menu

Pulsar in the context of Gamma-ray astronomy

Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies (above 100 keV) at the very shortest wavelengths. X-ray astronomy uses the next lower energy range, X-ray radiation, with energy below 100 keV.

In most cases, gamma rays from solar flares and Earth's atmosphere fall in the MeV range, but it's now known that solar flares can also produce gamma rays in the GeV range, contrary to previous beliefs. Much of the detected gamma radiation stems from collisions between hydrogen gas and cosmic rays within our galaxy. These gamma rays, originating from diverse mechanisms such as electron-positron annihilation, the inverse Compton effect and in some cases gamma decay, occur in regions of extreme temperature, density, and magnetic fields, reflecting violent astrophysical processes like the decay of neutral pions. They provide insights into extreme events like supernovae, hypernovae, and the behavior of matter in environments such as pulsars and blazars. A huge number of gamma ray emitting high-energy systems like black holes, stellar coronas, neutron stars, white dwarf stars, remnants of supernova, clusters of galaxies, including the Crab Nebula and the Vela Pulsar (the most powerful source so far), have been identified, alongside an overall diffuse gamma-ray background along the plane of the Milky Way galaxy. Cosmic radiation with the highest energy triggers electron-photon cascades in the atmosphere, while lower-energy gamma rays are only detectable above it. Gamma-ray bursts, like GRB 190114C, are transient phenomena challenging our understanding of high-energy astrophysical processes, ranging from microseconds to several hundred seconds.

↑ Return to Menu

Pulsar in the context of Astrophysical jet

An astrophysical jet is an astronomical phenomenon where ionised matter is expelled at high velocity from an astronomical object, in a pair of narrow streams aligned with the object's axis of rotation. When the matter in the beam approaches the speed of light, astrophysical jets become relativistic jets as they show effects from special relativity.

Astrophysical jets are associated with many types of high-energy astronomical sources, such as black holes, neutron stars and pulsars. Their causes are not yet fully understood, but they are believed to arise from dynamic interactions within accretion disks. One explanation is that as an accretion disk spins, it generates a rotating, tangled magnetic field which concentrates material from the disk into the jets and then drives it away from the central object. Jets may also be influenced by a general relativity effect known as frame-dragging.

↑ Return to Menu

Pulsar in the context of PSR B1509−58

PSR B1509−58 is a pulsar approximately at a distance of 17,000 light-years in the constellation of Circinus discovered by the Einstein X-Ray Observatory in 1982. Its diameter is only 12 miles (19 km). It is located in a Pulsar wind nebula created by itself, that was caused as a remnant of the Supernova (SNR) MSH 15−52 visual approximately 1,700 years ago at the southern celestial hemisphere not visible in the Northern Hemisphere. The nebula spans about 150 light years. The 0.1515 second pulsations ("6.597 times per second") are detected in the radio, X-ray, and γ-ray bands.

NASA described the star as "a rapidly spinning neutron star which is spewing energy out into the space around it to create complex and intriguing structures, including one that resembles a large cosmic hand". It is also known by the name "Hand of God". This phenomenon is called pareidolia.

↑ Return to Menu

Pulsar in the context of Centrifugal mechanism of acceleration

Centrifugal acceleration of astroparticles to relativistic energies might take place in rotating astrophysical objects (see also Fermi acceleration). It is strongly believed that active galactic nuclei and pulsars have rotating magnetospheres, therefore, they potentially can drive charged particles to high and ultra-high energies. It is a proposed explanation for ultra-high-energy cosmic rays (UHECRs) and extreme-energy cosmic rays (EECRs) exceeding the Greisen–Zatsepin–Kuzmin limit.

↑ Return to Menu