Pseudomonas aeruginosa in the context of "Gram-negative"

Play Trivia Questions online!

or

Skip to study material about Pseudomonas aeruginosa in the context of "Gram-negative"

Ad spacer

⭐ Core Definition: Pseudomonas aeruginosa

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobicfacultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes. P. aeruginosa is able to selectively inhibit various antibiotics from penetrating its outer membrane  and has high resistance to several antibiotics. According to the World Health Organization P. aeruginosa poses one of the greatest threats to humans in terms of antibiotic resistance.

The organism is considered opportunistic insofar as serious infection often occurs during existing diseases or conditions – most notably cystic fibrosis and traumatic burns. It generally affects the immunocompromised but can also infect the immunocompetent, as in hot tub folliculitis. Treatment of P. aeruginosa infections can be difficult due to its natural resistance to antibiotics. When more advanced antibiotic drug regimens are needed, adverse effects may result.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Pseudomonas aeruginosa in the context of Gram-negative bacteria

Gram-negative bacteria are bacteria that, unlike Gram-positive bacteria, do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. Their defining characteristic is that their cell envelope consists of a thin peptidoglycan cell wall sandwiched between an inner (cytoplasmic) membrane and an outer membrane. These bacteria are found in all environments that support life on Earth.

Within this category, notable species include the model organism Escherichia coli, along with various pathogenic bacteria, such as Pseudomonas aeruginosa, Chlamydia trachomatis, and Yersinia pestis. They pose significant challenges in the medical field due to their outer membrane, which acts as a protective barrier against numerous antibiotics (including penicillin), detergents that would normally damage the inner cell membrane, and the antimicrobial enzyme lysozyme produced by animals as part of their innate immune system. Furthermore, the outer leaflet of this membrane contains a complex lipopolysaccharide (LPS) whose lipid A component can trigger a toxic reaction when the bacteria are lysed by immune cells. This reaction may lead to septic shock, resulting in low blood pressure, respiratory failure, reduced oxygen delivery, and lactic acidosis.

↑ Return to Menu

Pseudomonas aeruginosa in the context of Swarming motility

Swarming motility is a rapid (2–10 μm/s) and coordinated translocation of a bacterial population across solid or semi-solid surfaces, and is an example of bacterial multicellularity and swarm behaviour. Swarming motility was first reported by Jorgen Henrichsen and has been mostly studied in genus Serratia, Salmonella, Aeromonas, Bacillus, Yersinia, Pseudomonas, Proteus, Vibrio and Escherichia.

This multicellular behavior has been mostly observed in controlled laboratory conditions and relies on two critical elements: 1) the nutrient composition and 2) viscosity of culture medium (i.e. % agar). One particular feature of this type of motility is the formation of dendritic fractal-like patterns formed by migrating swarms moving away from an initial location. Although the majority of species can produce tendrils when swarming, some species like Proteus mirabilis do form concentric circles motif instead of dendritic patterns.

↑ Return to Menu

Pseudomonas aeruginosa in the context of Superinfection

A superinfection is a second infection superimposed on an earlier one, especially by a different microbial agent of exogenous or endogenous origin, that is resistant to the treatment being used against the first infection. Examples of this in bacteriology are the overgrowth of endogenous Clostridioides difficile that occurs following treatment with a broad-spectrum antibiotic, and pneumonia or sepsis from Pseudomonas aeruginosa in some immunocompromised patients.

In virology, the definition is slightly different. Superinfection is the process by which a cell that has previously been infected by one virus gets co-infected with a different strain of the virus, or another virus, at a later point in time. In some cases viral superinfections may be resistant to the antiviral drug or drugs that were being used to treat the original infection. Viral superinfections may also be less susceptible to the host's immune response. In Zika virus infection, there is some evidence that primary infection of another Flavivirus, Binjari virus, results in the direct inhibition of a secondary infection of Zika virus in mosquito cells. Recent metagenomic analyses have demonstrated that the novel coronavirus, SARS-CoV-2 can be associated with superinfection and colonization of other pathogens, such as rhinovirus species and Moraxella spp.

↑ Return to Menu

Pseudomonas aeruginosa in the context of NicVAX

NicVAX is an experimental conjugate vaccine intended to reduce or eliminate physical dependence to nicotine. According to the U.S. National Institute of Drug Abuse, NicVAX can potentially be used to inoculate against nicotine addiction. This proprietary vaccine is being developed by Nabi Biopharmaceuticals of Rockville, MD. with the support from the U.S. National Institute on Drug Abuse. NicVAX consists of the hapten 3'-aminomethylnicotine which has been conjugated (attached) to Pseudomonas aeruginosa exotoxin A.

Early trials of NicVax were promising; two successive phase III trials showed results no better than placebo, and a more recent study showed that the drug decreased subjects' cravings for cigarettes.

↑ Return to Menu

Pseudomonas aeruginosa in the context of Alginic acid

Alginic acid, also called algin, is a naturally occurring, edible polysaccharide found in brown algae. It is hydrophilic and forms a viscous gum when hydrated. When the alginic acid binds with sodium and calcium ions, the resulting salts are known as alginates. Its colour ranges from white to yellowish-brown. It is sold in filamentous, granular, or powdered forms.

It is a significant component of the biofilms produced by the bacterium Pseudomonas aeruginosa, a major pathogen found in the lungs of some people who have cystic fibrosis. The biofilm and P. aeruginosa have a high resistance to antibiotics, but are susceptible to inhibition by macrophages.

↑ Return to Menu

Pseudomonas aeruginosa in the context of Pseudomonas

Pseudomonas is a genus of Gram-negative bacteria belonging to the family Pseudomonadaceae in the class Gammaproteobacteria. The 348 members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a wide range of niches and hosts. Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth-promoting P. fluorescens, P. lini, P. migulae, and P. graminis.

Because of their widespread occurrence in water and plant seeds such as dicots, the pseudomonads were observed early in the history of microbiology. The generic name Pseudomonas created for these organisms was defined in rather vague terms by Walter Migula in 1894 and 1900 as a genus of Gram-negative, rod-shaped, and polar-flagellated bacteria with some sporulating species. The latter statement was later proved incorrect and was due to refractive granules of reserve materials. Despite the vague description, the type species, Pseudomonas pyocyanea (basionym of Pseudomonas aeruginosa), proved the best descriptor.

↑ Return to Menu