Pseudo-force in the context of "Euler force"

Play Trivia Questions online!

or

Skip to study material about Pseudo-force in the context of "Euler force"

Ad spacer

⭐ Core Definition: Pseudo-force

A fictitious force, also known as an inertial force or pseudo-force, is a force that appears to act on an object when its motion is described or experienced from a non-inertial frame of reference. Unlike real forces, which result from physical interactions between objects, fictitious forces occur due to the acceleration of the observer’s frame of reference rather than any actual force acting on a body. These forces are necessary for describing motion correctly within an accelerating frame, ensuring that Newton's second law of motion remains applicable.

Common examples of fictitious forces include the centrifugal force, which appears to push objects outward in a rotating system; the Coriolis force, which affects objects moving relative to the rotating frame, such as a wind parcel on Earth; and the Euler force, which arises when a rotating system changes its angular velocity (i.e., due to angular acceleration).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Pseudo-force in the context of Non-inertial reference frame

A non-inertial reference frame (also known as an accelerated reference frame) is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion are the same in all inertial frames, they vary in non-inertial frames, with apparent motion depending on the acceleration.

In classical mechanics it is often possible to explain the motion of bodies in non-inertial reference frames by introducing additional fictitious forces (also called inertial forces, pseudo-forces, and d'Alembert forces) to Newton's second law. Common examples of this include the Coriolis force and the centrifugal force. In general, the expression for any fictitious force can be derived from the acceleration of the non-inertial frame. As stated by Goodman and Warner, "One might say that F = ma holds in any coordinate system provided the term 'force' is redefined to include the so-called 'reversed effective forces' or 'inertia forces'."

↑ Return to Menu