Prototype metre in the context of Mètre


Prototype metre in the context of Mètre

⭐ Core Definition: Prototype metre

During the French Revolution, the traditional units of measure were to be replaced by consistent measures based on natural phenomena. As a base unit of length, scientists had favoured the seconds pendulum (a pendulum with a half-period of one second) one century earlier, but this was rejected as it had been discovered that this length varied from place to place with local gravity. The mètre was introduced – defined as one ten-millionth of the shortest distance from the North Pole to the equator passing through Paris, assuming an Earth flattening of 1/334.

Following the arc measurement of Delambre and Méchain, the historical French official standard of the metre was made available in the form of the Mètre des Archives, a platinum bar held in Paris. It was originally also planned to dematerialise the definition of the metre by counting the number of swings of a one-metre-long pendulum during a day at a latitude of 45°. However, dematerialising the definition of units of length by means of the pendulum would prove less reliable than artefacts.

↓ Menu
HINT:

In this Dossier

Prototype metre in the context of 2019 revision of the SI

In 2019, four of the seven SI base units specified in the International System of Quantities were redefined in terms of natural physical constants, rather than human artefacts such as the standard kilogram. Effective 20 May 2019, the 144th anniversary of the Metre Convention, the kilogram, ampere, kelvin, and mole are defined by setting exact numerical values, when expressed in SI units, for the Planck constant (h), the elementary electric charge (e), the Boltzmann constant (kB), and the Avogadro constant (NA), respectively. The second, metre, and candela had previously been redefined using physical constants. The four new definitions aimed to improve the SI without changing the value of any units, ensuring continuity with existing measurements. In November 2018, the 26th General Conference on Weights and Measures (CGPM) unanimously approved these changes, which the International Committee for Weights and Measures (CIPM) had proposed earlier that year after determining that previously agreed conditions for the change had been met. These conditions were satisfied by a series of experiments that measured the constants to high accuracy relative to the old SI definitions, and were the culmination of decades of research.

The previous major change of the metric system occurred in 1960 when the International System of Units (SI) was formally published. At this time the metre was redefined: the definition was changed from the prototype of the metre to a certain number of wavelengths of a spectral line of a krypton-86 radiation, making it derivable from universal natural phenomena. The kilogram remained defined by a physical prototype, leaving it the only artefact upon which the SI unit definitions depended. At this time the SI, as a coherent system, was constructed around seven base units, powers of which were used to construct all other units. With the 2019 redefinition, the SI is constructed around seven defining constants, allowing all units to be constructed directly from these constants. The designation of base units is retained but is no longer essential to define the SI units.

View the full Wikipedia page for 2019 revision of the SI
↑ Return to Menu

Prototype metre in the context of Japanese unit

Traditional Japanese units of measurement or the shakkanhō (尺貫法) is the traditional system of measurement used by the people of the Japanese archipelago. It is largely based on the Chinese system, which spread to Japan and the rest of the Sinosphere in antiquity. It has remained mostly unaltered since the adoption of the measures of the Tang dynasty in 701. Following the 1868 Meiji Restoration, Imperial Japan adopted the metric system and defined the traditional units in metric terms on the basis of a prototype metre and kilogram. The present values of most Korean and Taiwanese units of measurement derive from these values as well.

For a time in the early 20th century, the traditional, metric, and English systems were all legal in Japan. Although commerce has since been legally restricted to using the metric system, the old system is still used in some instances. The old measures are common in carpentry and agriculture, with tools such as chisels, spatels, saws, and hammers manufactured in sun and bu sizes. Floorspace is expressed in terms of tatami mats, and land is sold on the basis of price in tsubo. Sake is sold in multiples of 1 , with the most common bottle sizes being 4 (720 mL) or 10 (1.8 L, isshōbin).

View the full Wikipedia page for Japanese unit
↑ Return to Menu