Protein design in the context of "Site-directed mutagenesis"

Play Trivia Questions online!

or

Skip to study material about Protein design in the context of "Site-directed mutagenesis"




⭐ Core Definition: Protein design

Protein design is the rational design of new protein molecules to design novel activity, behavior, or purpose, and to advance basic understanding of protein function. Proteins can be designed from scratch (de novo design) or by making calculated variants of a known protein structure and its sequence (termed protein redesign). Rational protein design approaches make protein-sequence predictions that will fold to specific structures. These predicted sequences can then be validated experimentally through methods such as peptide synthesis, site-directed mutagenesis, or artificial gene synthesis.

Rational protein design dates back to the mid-1970s. Recently, however, there were numerous examples of successful rational design of water-soluble and even transmembrane peptides and proteins, in part due to a better understanding of different factors contributing to protein structure stability and development of better computational methods.

↓ Menu

In this Dossier

Protein design in the context of Nucleic acid design

Nucleic acid design is the process of generating a set of nucleic acid base sequences that will associate into a desired conformation. Nucleic acid design is central to the fields of DNA nanotechnology and DNA computing. It is necessary because there are many possible sequences of nucleic acid strands that will fold into a given secondary structure, but many of these sequences will have undesired additional interactions which must be avoided. In addition, there are many tertiary structure considerations which affect the choice of a secondary structure for a given design.

Nucleic acid design has similar goals to protein design: in both, the sequence of monomers is rationally designed to favor the desired folded or associated structure and to disfavor alternate structures. However, nucleic acid design has the advantage of being a much computationally simpler problem, since the simplicity of Watson-Crick base pairing rules leads to simple heuristic methods which yield experimentally robust designs. Computational models for protein folding require tertiary structure information whereas nucleic acid design can operate largely on the level of secondary structure. However, nucleic acid structures are less versatile than proteins in their functionality.

↑ Return to Menu

Protein design in the context of David Baker (biochemist)

David Baker (born October 6, 1962) is an American biochemist and computational biologist who has pioneered methods to design proteins and predict their three-dimensional structures. He is the Henrietta and Aubrey Davis Endowed Professor in Biochemistry, an investigator with the Howard Hughes Medical Institute, and an adjunct professor of genome sciences, bioengineering, chemical engineering, computer science, and physics at the University of Washington. He was awarded the shared 2024 Nobel Prize in Chemistry for his work on computational protein design.

Baker is a member of the United States National Academy of Sciences and the director of the University of Washington's Institute for Protein Design. He has co-founded more than a dozen biotechnology companies and was included in Time magazine's inaugural list of the 100 Most Influential People in health in 2024.

↑ Return to Menu