Propagation constant in the context of Imaginary number


Propagation constant in the context of Imaginary number

Propagation constant Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Propagation constant in the context of "Imaginary number"


⭐ Core Definition: Propagation constant

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

The propagation constant's value is expressed logarithmically, almost universally to the base e, rather than base 10 that is used in telecommunications in other situations. The quantity measured, such as voltage, is expressed as a sinusoidal phasor. The phase of the sinusoid varies with distance which results in the propagation constant being a complex number, the imaginary part being caused by the phase change.

↓ Menu
HINT:

In this Dossier

Propagation constant in the context of Mathematical descriptions of opacity

When an electromagnetic wave travels through a medium in which it gets attenuated (this is called an "opaque" or "attenuating" medium), it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:

Note that in many of these cases there are multiple, conflicting definitions and conventions in common use. This article is not necessarily comprehensive or universal.

View the full Wikipedia page for Mathematical descriptions of opacity
↑ Return to Menu