Proof (mathematics) in the context of "Conjecture"

Play Trivia Questions online!

or

Skip to study material about Proof (mathematics) in the context of "Conjecture"

Ad spacer

⭐ Core Definition: Proof (mathematics)

A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in all possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work.

Proofs employ logic expressed in mathematical symbols, along with natural language that usually admits some ambiguity. In most mathematical literature, proofs are written in terms of rigorous informal logic. Purely formal proofs, written fully in symbolic language without the involvement of natural language, are considered in proof theory. The distinction between formal and informal proofs has led to much examination of current and historical mathematical practice, quasi-empiricism in mathematics, and so-called folk mathematics, oral traditions in the mainstream mathematical community or in other cultures. The philosophy of mathematics is concerned with the role of language and logic in proofs, and mathematics as a language.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Proof (mathematics) in the context of Mathematical object

A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a symbol, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, expressions, shapes, functions, and sets. Mathematical objects can be very complex; for example, theorems, proofs, and even formal theories are considered as mathematical objects in proof theory.

In philosophy of mathematics, the concept of "mathematical objects" touches on topics of existence, identity, and the nature of reality. In metaphysics, objects are often considered entities that possess properties and can stand in various relations to one another. Philosophers debate whether mathematical objects have an independent existence outside of human thought (realism), or if their existence is dependent on mental constructs or language (idealism and nominalism). Objects can range from the concrete: such as physical objects usually studied in applied mathematics, to the abstract, studied in pure mathematics. What constitutes an "object" is foundational to many areas of philosophy, from ontology (the study of being) to epistemology (the study of knowledge). In mathematics, objects are often seen as entities that exist independently of the physical world, raising questions about their ontological status. There are varying schools of thought which offer different perspectives on the matter, and many famous mathematicians and philosophers each have differing opinions on which is more correct.

↑ Return to Menu

Proof (mathematics) in the context of Mathematics as a language

The language of mathematics or mathematical language is an extension of the natural language (for example English) that is used in mathematics and in science for expressing results (scientific laws, theorems, proofs, logical deductions, etc.) with concision, precision and unambiguity.

↑ Return to Menu

Proof (mathematics) in the context of Foundations of mathematics

Foundations of mathematics are the logical and mathematical framework that allows the development of mathematics without generating self-contradictory theories, and to have reliable concepts of theorems, proofs, algorithms, etc. in particular. This may also include the philosophical study of the relation of this framework with reality.

↑ Return to Menu