Projective coordinates in the context of August Ferdinand Möbius


Projective coordinates in the context of August Ferdinand Möbius

⭐ Core Definition: Projective coordinates

In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. They have the advantage that the coordinates of points, including points at infinity, can be represented using finite coordinates. Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix. They are also used in fundamental elliptic curve cryptography algorithms.

If homogeneous coordinates of a point are multiplied by a non-zero scalar then the resulting coordinates represent the same point. Since homogeneous coordinates are also given to points at infinity, the number of coordinates required to allow this extension is one more than the dimension of the projective space being considered. For example, two homogeneous coordinates are required to specify a point on the projective line and three homogeneous coordinates are required to specify a point in the projective plane.

↓ Menu
HINT:

In this Dossier

Projective coordinates in the context of Projective transformation

In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, some collineations are not homographies, but the fundamental theorem of projective geometry asserts that is not so in the case of real projective spaces of dimension at least two. Synonyms include projectivity, projective transformation, and projective collineation.

Historically, homographies (and projective spaces) have been introduced to study perspective and projections in Euclidean geometry, and the term homography, which, etymologically, roughly means "similar drawing", dates from this time. At the end of the 19th century, formal definitions of projective spaces were introduced, which extended Euclidean and affine spaces by the addition of new points called points at infinity. The term "projective transformation" originated in these abstract constructions. These constructions divide into two classes that have been shown to be equivalent. A projective space may be constructed as the set of the lines of a vector space over a given field (the above definition is based on this version); this construction facilitates the definition of projective coordinates and allows using the tools of linear algebra for the study of homographies. The alternative approach consists in defining the projective space through a set of axioms, which do not involve explicitly any field (incidence geometry, see also synthetic geometry); in this context, collineations are easier to define than homographies, and homographies are defined as specific collineations, thus called "projective collineations".

View the full Wikipedia page for Projective transformation
↑ Return to Menu

Projective coordinates in the context of Cubic curve

In mathematics, a cubic plane curve , often called simply a cubic is a plane algebraic curve defined by a homogeneous polynomial of degree 3 in three variables or by the corresponding polynomial in two variables Starting from , one can recover as .

Typically, the coefficients of the polynomial belong to but they may belong to any field , in which case, one talks of a cubic defined over . The points of the cubic are the points of the projective space of dimension three over the field of the complex numbers (or over an algebraic closure of ), whose projective coordinates satisfy the equation of the cubicA point at infinity of the cubic is a point such that . A real point of the cubic is a point with real coordinates. A point defined over is a point with coordinates in .

View the full Wikipedia page for Cubic curve
↑ Return to Menu

Projective coordinates in the context of Cubic plane curve

In mathematics, a cubic plane curve , often called simply a cubic is a plane algebraic curve defined by a homogeneous polynomial of degree 3 in three variables or by the corresponding polynomial in two variables Starting from , one can recover as .

Typically, the coefficients of the polynomial belong to but they may belong to any field , in which case, one talks of a cubic defined over . The points of the cubic are the points of the projective space of dimension three over the field of the complex numbers (or over an algebraic closure of ), whose projective coordinates satisfy the equation of the cubicA point at infinity of the cubic is a point such that . A real point of the cubic is a point with real coordinates. A point defined over is a point with coordinates in .

View the full Wikipedia page for Cubic plane curve
↑ Return to Menu