Process systems engineering in the context of Concentration gradient


Process systems engineering in the context of Concentration gradient

Process systems engineering Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Process systems engineering in the context of "Concentration gradient"


⭐ Core Definition: Process systems engineering


Process engineering is a field of study focused on the development and optimization of industrial processes. It consists of the understanding and application of the fundamental principles and laws of nature to allow humans to transform raw material and energy into products that are useful to society, at an industrial level. By taking advantage of the driving forces of nature such as pressure, temperature and concentration gradients, as well as the law of conservation of mass, process engineers can develop methods to synthesize and purify large quantities of desired chemical products. Process engineering focuses on the design, operation, control, optimization and intensification of chemical, physical, and biological processes. Their work involves analyzing the chemical makeup of various ingredients and determining how they might react with one another. A process engineer can specialize in a number of areas, including the following:

  • Agriculture processing
  • Food and dairy production
  • Beer and whiskey production
  • Cosmetics production
  • Pharmaceutical production
  • Petrochemical manufacturing
  • Mineral processing
  • Printed circuit board production
↓ Menu
HINT:

In this Dossier

Process systems engineering in the context of Systems engineering


Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design, integrate, and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. The individual outcome of such efforts, an engineered system, can be defined as a combination of components that work in synergy to collectively perform a useful function.

Issues such as requirements engineering, reliability, logistics, coordination of different teams, testing and evaluation, maintainability, and many other disciplines, aka "ilities", necessary for successful system design, development, implementation, and ultimate decommission become more difficult when dealing with large or complex projects. Systems engineering deals with work processes, optimization methods, and risk management tools in such projects. It overlaps technical and human-centered disciplines such as industrial engineering, production systems engineering, process systems engineering, mechanical engineering, manufacturing engineering, production engineering, control engineering, software engineering, electrical engineering, cybernetics, aerospace engineering, organizational studies, civil engineering and project management. Systems engineering ensures that all likely aspects of a project or system are considered and integrated into a whole.

View the full Wikipedia page for Systems engineering
↑ Return to Menu