Principle of explosion in the context of "Laws of logic (disambiguation)"

Play Trivia Questions online!

or

Skip to study material about Principle of explosion in the context of "Laws of logic (disambiguation)"

Ad spacer

⭐ Core Definition: Principle of explosion

In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion.

The proof of this principle was first given by 12th-century French philosopher William of Soissons. Due to the principle of explosion, the existence of a contradiction (inconsistency) in a formal axiomatic system is disastrous; since any statement—true or not—can be proven, it trivializes the concepts of truth and falsity. Around the turn of the 20th century, the discovery of contradictions such as Russell's paradox at the foundations of mathematics thus threatened the entire structure of mathematics. Mathematicians such as Gottlob Frege, Ernst Zermelo, Abraham Fraenkel, and Thoralf Skolem put much effort into revising set theory to eliminate these contradictions, resulting in the modern Zermelo–Fraenkel set theory.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Principle of explosion in the context of Consistency proof

In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences (informally "axioms") and the set of closed sentences provable from under some (specified, possibly implicitly) formal deductive system. The set of axioms is consistent when there is no formula such that and . A trivial theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a model, i.e., there exists an interpretation under which all axioms in the theory are true. This is what consistent meant in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.

In a sound formal system, every satisfiable theory is consistent, but the converse does not hold. If there exists a deductive system for which these semantic and syntactic definitions are equivalent for any theory formulated in a particular deductive logic, the logic is called complete. The completeness of the propositional calculus was proved by Paul Bernays in 1918 and Emil Post in 1921, while the completeness of (first order) predicate calculus was proved by Kurt Gödel in 1930, and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann (1924), von Neumann (1927) and Herbrand (1931). Stronger logics, such as second-order logic, are not complete.

↑ Return to Menu

Principle of explosion in the context of Paraconsistent logic

Paraconsistent logic is a type of non-classical logic that allows for the coexistence of contradictory statements without leading to a logical explosion where anything can be proven true. Specifically, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic, purposefully excluding the principle of explosion.

Inconsistency-tolerant logics have been discussed since at least 1910 (and arguably much earlier, for example in the writings of Aristotle); however, the term paraconsistent ("beside the consistent") was first coined in 1976, by the Peruvian philosopher Francisco Miró Quesada Cantuarias, under request of Newton da Costa, who is often credited as the creator of the field. The study of paraconsistent logic has been dubbed paraconsistency, which encompasses the school of dialetheism.

↑ Return to Menu

Principle of explosion in the context of Dialetheism

Dialetheism (/dəˈlɛθiɪzəm/; from Greek δι- di- 'twice' and ἀλήθεια alḗtheia 'truth') is the view that there are statements that are both true and false. More precisely, it is the belief that there can be a true statement whose negation is also true. Such statements are called "true contradictions", dialetheia, or nondualisms.

Dialetheism is not a system of formal logic; instead, it is a thesis about truth that influences the construction of a formal logic, often based on pre-existing systems. Introducing dialetheism has various consequences, depending on the theory into which it is introduced. A common mistake resulting from this is to reject dialetheism on the basis that, in traditional systems of logic (e.g., classical logic and intuitionistic logic), every statement becomes a theorem if a contradiction is true, trivialising such systems when dialetheism is included as an axiom. Other logical systems, however, do not explode in this manner when contradictions are introduced; such contradiction-tolerant systems are known as paraconsistent logics. Dialetheists who do not want to allow that every statement is true are free to favour these over traditional, explosive logics.

↑ Return to Menu