Prime factorization theorem in the context of Up to


Prime factorization theorem in the context of Up to

Prime factorization theorem Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Prime factorization theorem in the context of "Up to"


⭐ Core Definition: Prime factorization theorem

In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 is either prime or can be represented uniquely as a product of prime numbers, up to the order of the factors. For example,

↓ Menu
HINT:

In this Dossier

Prime factorization theorem in the context of Integer factorization

In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.

To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves testing whether each factor is prime each time a factor is found.

View the full Wikipedia page for Integer factorization
↑ Return to Menu