Primary color in the context of Additive mixing


Primary color in the context of Additive mixing

Primary color Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Primary color in the context of "Additive mixing"


⭐ Core Definition: Primary color

Primary colors are colorants or coloured lights that can be mixed in varying amounts to produce a gamut of colors. This is the essential method used to create the perception of a broad range of colors in, e.g., electronic displays, color printing, and paintings. Perceptions associated with a given combination of primary colors can be predicted by an appropriate mixing model (e.g., additive, subtractive) that uses the physics of how light interacts with physical media, and ultimately the retina to be able to accurately display the intended colors.

The most common colour mixing models are the additive primary colors (red, green, blue) and the subtractive primary colors (cyan, magenta, yellow). Red, yellow, and blue are also commonly taught as primary colors (usually in the context of subtractive color mixing as opposed to additive color mixing), despite some criticism due to its lack of scientific basis.

↓ Menu
HINT:

In this Dossier

Primary color in the context of Yellow

Yellow is the color between green and orange on the spectrum of light. It is evoked by light with a dominant wavelength of roughly 575–585 nm. It is a primary color in subtractive color systems, used in painting or color printing. In the RGB color model, used to create colors on television and computer screens, yellow is a secondary color made by combining red and green at equal intensity. Carotenoids give the characteristic yellow color to autumn leaves, corn, canaries, daffodils, and lemons, as well as egg yolks, buttercups, and bananas. They absorb light energy and protect plants from photo damage in some cases. Sunlight has a slight yellowish hue when the Sun is near the horizon, due to atmospheric scattering of shorter wavelengths (green, blue, and violet).

Because it was widely available, yellow ochre pigment was one of the first colors used in art; the Lascaux cave in France has a painting of a yellow horse 17,000 years old. Ochre and orpiment pigments were used to represent gold and skin color in Egyptian tombs, then in the murals in Roman villas. In the early Christian church, yellow was the color associated with the Pope and the golden keys of the Kingdom, but it was also associated with Judas Iscariot and used to mark heretics. In the 20th century, Jews in Nazi-occupied Europe were forced to wear a yellow star. In China, bright yellow was the color of the Middle Kingdom, and could be worn only by the emperor and his household; special guests were welcomed on a yellow carpet.

View the full Wikipedia page for Yellow
↑ Return to Menu

Primary color in the context of Cathode-ray tube

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a frame of video on an analog television set (TV), digital raster graphics on a computer monitor, or other phenomena like radar targets. A CRT in a TV is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.

In CRT TVs and computer monitors, the entire front area of the tube is scanned repeatedly and systematically in a fixed pattern called a raster. In color devices, an image is produced by controlling the intensity of each of three electron beams, one for each additive primary color (red, green, and blue) with a video signal as a reference. In modern CRT monitors and TVs the beams are bent by magnetic deflection, using a deflection yoke. Electrostatic deflection is commonly used in oscilloscopes.

View the full Wikipedia page for Cathode-ray tube
↑ Return to Menu

Primary color in the context of Trichromacy

Trichromacy or trichromatism is the possession of three independent channels for conveying color information, derived from the three different types of cone cells in the eye. Organisms with trichromacy are called trichromats.

The normal explanation of trichromacy is that the organism's retina contains three types of color receptors (called cone cells in vertebrates) with different absorption spectra. In actuality, the number of such receptor types may be greater than three, since different types may be active at different light intensities. In vertebrates with three types of cone cells, at low light intensities the rod cells may contribute to color vision.

View the full Wikipedia page for Trichromacy
↑ Return to Menu

Primary color in the context of Additive color

Additive color or additive mixing is a property of a color model that predicts the appearance of colors made by coincident component lights, i.e. the perceived color can be predicted by summing the numeric representations of the component colors. Modern formulations of Grassmann's laws describe the additivity in the color perception of light mixtures in terms of algebraic equations. Additive color predicts perception and not any sort of change in the photons of light themselves. These predictions are only applicable in the limited scope of color matching experiments where viewers match small patches of uniform color isolated against a gray or black background.

Additive color models are applied in the design and testing of electronic displays that are used to render realistic images containing diverse sets of color using phosphors that emit light of a limited set of primary colors. Examination with a sufficiently powerful magnifying lens will reveal that each pixel in CRT, LCD, and most other types of color video displays is composed of red, green, and blue light-emitting phosphors which appear as a variety of single colors when viewed from a normal distance.

View the full Wikipedia page for Additive color
↑ Return to Menu

Primary color in the context of RGB

The RGB color model is an additive color model in which the red, green, and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

The main purpose of the RGB color model is for the sensing, representation, and display of images in electronic systems, such as televisions and computers, though it has also been used in conventional photography and colored lighting. Before the electronic age, the RGB color model already had a solid theory behind it, based in human perception of colors.

View the full Wikipedia page for RGB
↑ Return to Menu

Primary color in the context of Secondary color

A secondary color is a color made by mixing two primary colors of a given color model in even proportions. Combining one secondary color and a primary color in the same manner produces a tertiary color. Secondary colors are special in traditional color theory and color science.

View the full Wikipedia page for Secondary color
↑ Return to Menu

Primary color in the context of Cyan

Cyan (/ˈs.ən, -æn/) is the color between blue and green on the visible spectrum of light. It is evoked by light with a predominant wavelength between 500 and 520 nm, between the wavelengths of green and blue.

In the subtractive color system, or CMYK color model, which can be overlaid to produce all colors in paint and color printing, cyan is one of the primary colors, along with magenta and yellow. In the additive color system, or RGB color model, used to create all the colors on a computer or television display, cyan is made by mixing equal amounts of green and blue light. Cyan is the complement of red; it can be made by the removal of red from white. Mixing red light and cyan light at the right intensity will make white light. It is commonly seen on a bright, sunny day in the sky.

View the full Wikipedia page for Cyan
↑ Return to Menu

Primary color in the context of CIE 1931 color space

In 1931, the International Commission on Illumination (CIE) published the CIE 1931 color spaces which define the relationship between the visible spectrum and human color vision. The CIE color spaces are mathematical models that comprise a "standard observer", which is a static idealization of the color vision of a normal human. A useful application of the CIEXYZ colorspace is that a mixture of two colors in some proportion lies on the straight line between those two colors. One disadvantage is that it is not perceptually uniform. This disadvantage is remedied in subsequent color models such as CIELUV and CIELAB, but these and modern color models still use the CIE 1931 color spaces as a foundation.

The CIE developed and maintains many of the standards in use today relating to colorimetry. The CIE color spaces were created using data from a series of experiments, where human test subjects adjusted red, green, and blue primary colors to find a visual match to a second, pure color. The original experiments were conducted in the mid-1920s by William David Wright using ten observers and John Guild using seven observers. The experimental results were combined, creating the CIE RGB color space. The CIE XYZ color space was derived from CIE RGB in an effort to simplify the math.

View the full Wikipedia page for CIE 1931 color space
↑ Return to Menu

Primary color in the context of Tetrachromat

Tetrachromacy (from Ancient Greek tetra, meaning "four" and chroma, meaning "color") is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye. Organisms with tetrachromacy are called tetrachromats.

In tetrachromatic organisms, the sensory color space is four-dimensional, meaning that matching the sensory effect of arbitrarily chosen spectra of light within their visible spectrum requires mixtures of at least four primary colors.

View the full Wikipedia page for Tetrachromat
↑ Return to Menu

Primary color in the context of Color wheel

A color wheel or color circle is an abstract illustrative organization of color hues around a circle, which shows the relationships between primary colors, secondary colors, tertiary colors etc.

Some sources use the terms color wheel and color circle interchangeably; however, one term or the other may be more prevalent in certain fields or certain versions as mentioned above. For instance, some reserve the term color wheel for mechanical rotating devices, such as color tops, filter wheels or the Newton disc. Others classify various color wheels as color disc, color chart, and color scale varieties.

View the full Wikipedia page for Color wheel
↑ Return to Menu

Primary color in the context of Adobe RGB color space

The Adobe RGB (1998) color space or opRGB is a color space developed by Adobe Inc. in 1998. It was designed to encompass most of the colors achievable on CMYK color printers, but by using RGB primary colors on a device such as a computer display. The Adobe RGB (1998) color space encompasses roughly 30% of the visible colors specified by the CIELAB color space – improving upon the gamut of the sRGB color space, primarily in cyan-green hues. It was subsequently standardized by the IEC as IEC 61966-2-5:1999 with a name opRGB (optional RGB color space) and is used in HDMI.

View the full Wikipedia page for Adobe RGB color space
↑ Return to Menu

Primary color in the context of Gamut

The term has various meanings it goes by. In color reproduction and colorimetry, a gamut, or color gamut /ˈɡæmət/, is a convex set containing the colors that can be accurately represented, i.e. reproduced by an output device (e.g. printer or display) or measured by an input device (e.g. camera or visual system). Devices with a larger gamut can represent more colors. Similarly, gamut may also refer to the colors within a defined color space, which is not linked to a specific device. A trichromatic gamut is often visualized as a color triangle. A less common usage defines gamut as the subset of colors contained within an image, scene or video.

View the full Wikipedia page for Gamut
↑ Return to Menu

Primary color in the context of Unique hues

Unique hue is a term used in perceptual psychology of color vision and generally applied to the purest hues of blue, green, yellow and red. The proponents of the opponent process theory believe that these hues cannot be described as a mixture of other hues, and are therefore pure, whereas all other hues are composite. The neural correlate of the unique hues are approximated by the extremes of the opponent channels in opponent process theory. In this context, unique hues are sometimes described as "psychological primaries" as they can be considered analogous to the primary colors of trichromatic color theory.

View the full Wikipedia page for Unique hues
↑ Return to Menu

Primary color in the context of RYB color model

RYB (an abbreviation of red–yellow–blue) is a subtractive color model used in art and applied design in which red, yellow, and blue pigments are considered primary colors. Under traditional color theory, this set of primary colors was advocated by Moses Harris, Michel Eugène Chevreul, Johannes Itten and Josef Albers, and applied by countless artists and designers. The RYB color model underpinned the color curriculum of the Bauhaus, Ulm School of Design and numerous art and design schools that were influenced by the Bauhaus, including the IIT Institute of Design (founded as the New Bauhaus), Black Mountain College, Design Department Yale University, the Shillito Design School, Sydney, and Parsons School of Design, New York.

In this context, the term primary color refers to three exemplar colors (red, yellow, and blue) as opposed to specific pigments. As illustrated, in the RYB color model, red, yellow, and blue are intermixed to create secondary color segments of orange, green, and purple. This set of primary colors emerged at a time when access to a large range of pigments was limited by availability and cost, and it encouraged artists and designers to explore the many diverse colors through mixing and intermixing a limited range of pigment colors. In art and design education, gray, red, yellow, and blue pigments were usually augmented with white and black pigments, enabling the creation of a larger gamut of colors and details including tints and shades.

View the full Wikipedia page for RYB color model
↑ Return to Menu