Pressure measurement in the context of "Pressures"

Play Trivia Questions online!

or

Skip to study material about Pressure measurement in the context of "Pressures"

Ad spacer

⭐ Core Definition: Pressure measurement

Pressure measurement is the measurement of an applied force per unit area by a fluid (liquid or gas) on a surface. Pressure is typically expressed in units of pascals in the International System of Units (SI). Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges, vacuum gauges or compound gauges (vacuum & pressure). The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

A vacuum gauge is used to measure pressures lower than the ambient atmospheric pressure, which is set as the zero point, in negative values (for instance, −1 bar or −760 mmHg equals total vacuum). Most gauges measure pressure relative to atmospheric pressure as the zero point, so this form of reading is simply referred to as "gauge pressure". However, anything greater than total vacuum is technically a form of pressure. For very low pressures, a gauge that uses total vacuum as the zero point reference must be used, giving pressure reading as an absolute pressure.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Pressure measurement in the context of Pressure

Pressure (symbol: p or P) is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled gage pressure) is the pressure relative to the ambient pressure.

Various units are used to express pressure. Some of these derive from a unit of force divided by a unit of area; the SI unit of pressure, the pascal (Pa), for example, is one newton per square metre (N/m); similarly, the pound-force per square inch (psi, symbol lbf/in) is the traditional unit of pressure in the imperial and US customary systems. Pressure may also be expressed in terms of standard atmospheric pressure; the unit atmosphere (atm) is equal to this pressure, and the torr is defined as 1760 of this. Manometric units such as the centimetre of water, millimetre of mercury, and inch of mercury are used to express pressures in terms of the height of column of a particular fluid in a manometer.

↑ Return to Menu

Pressure measurement in the context of Superheated steam

Superheated steam is steam at a temperature higher than its vaporization point at the absolute pressure where the temperature is measured.

Superheated steam can therefore cool (lose internal energy) by some amount, resulting in a lowering of its temperature without changing state (i.e., condensing) from a gas to a mixture of saturated vapor and liquid. If unsaturated steam (a mixture which contains both water vapor and liquid water droplets) is heated at constant pressure, its temperature will also remain constant as the vapor quality (think dryness, or percent saturated vapor) increases towards 100%, and becomes dry (i.e., no saturated liquid) saturated steam. Continued heat input will then "super" heat the dry saturated steam. This will occur if saturated steam contacts a surface with a higher temperature.

↑ Return to Menu

Pressure measurement in the context of Millimetre of mercury

A millimetre of mercury is a manometric unit of pressure, formerly defined as the extra pressure generated by a column of mercury one millimetre high. Currently, it is defined as exactly 133.322387415 pascals, or approximately 1 torr = 1/760 atmosphere = 101325/760 pascals. It is denoted mmHg or mm Hg.

Although not an SI unit, the millimetre of mercury is still often encountered in some fields; for example, it is still widely used in medicine, as demonstrated for example in the medical literature indexed in PubMed. For example, the U.S. and European guidelines on hypertension, in using millimeters of mercury for blood pressure, are reflecting the fact (common basic knowledge among health care professionals) that this is the usual unit of blood pressure in clinical medicine.

↑ Return to Menu

Pressure measurement in the context of Sphygmomanometer

A sphygmomanometer (/ˌsfɪɡmməˈnɒmɪtər/ SFIG-moh-mə-NO-mi-tər), also known as a blood pressure monitor, blood pressure machine, or blood pressure gauge, is a device used to measure blood pressure, composed of an inflatable cuff to collapse and then release the artery under the cuff in a controlled manner, and a mercury or aneroid manometer to measure the pressure. Manual sphygmomanometers are used with a stethoscope when using the auscultatory technique.

A sphygmomanometer consists of an inflatable cuff, a measuring unit (the mercury manometer, or aneroid gauge), and a mechanism for inflation which may be a manually operated bulb and valve or a pump operated electrically.

↑ Return to Menu

Pressure measurement in the context of Intracranial pressure

Intracranial pressure (ICP) is the pressure exerted by fluids such as cerebrospinal fluid (CSF) inside the skull and on the brain tissue. ICP is measured in millimeters of mercury (mmHg) and at rest, is normally 7–15 mmHg for a supine adult. This equals to 9–20 cmH2O, which is a common scale used in lumbar punctures. The body has various mechanisms by which it keeps the ICP stable, with CSF pressures varying by about 1 mmHg in normal adults through shifts in production and absorption of CSF.

Changes in ICP are attributed to volume changes in one or more of the constituents contained in the cranium. CSF pressure has been shown to be influenced by abrupt changes in intrathoracic pressure during coughing (which is induced by contraction of the diaphragm and abdominal wall muscles, the latter of which also increases intra-abdominal pressure), the valsalva maneuver, and communication with the vasculature (venous and arterial systems).

↑ Return to Menu