Power plant in the context of Electrical conductor


Power plant in the context of Electrical conductor

Power plant Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Power plant in the context of "Electrical conductor"


⭐ Core Definition: Power plant

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

Many power stations contain one or more generators, rotating machine that converts mechanical power into three-phase electric power. The relative motion between a magnetic field and a conductor creates an electric current.

↓ Menu
HINT:

In this Dossier

Power plant in the context of Energy transmission

Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.

Efficient long-distance transmission of electric power requires high voltages. This reduces the losses produced by strong currents. Transmission lines use either alternating current (AC) or direct current (DC). The voltage level is changed with transformers. The voltage is stepped up for transmission, then reduced for local distribution.

View the full Wikipedia page for Energy transmission
↑ Return to Menu

Power plant in the context of Thermal pollution

Thermal pollution, sometimes called "thermal enrichment", is the degradation of water quality by any process that changes ambient water temperature. Thermal pollution is the rise or drop in the temperature of a natural body of water caused by human influence. Thermal pollution, unlike chemical pollution, results in a change in the physical properties of water. A common cause of thermal pollution is the use of water as a coolant by power plants and industrial manufacturers. Urban runoffstormwater discharged to surface waters from rooftops, roads, and parking lots—and reservoirs can also be a source of thermal pollution. Thermal pollution can also be caused by the release of very cold water from the base of reservoirs into warmer rivers.

When water used as a coolant is returned to the natural environment at a higher temperature, the sudden change in temperature decreases oxygen supply and affects ecosystem composition. Fish and other organisms adapted to particular temperature range can be killed by an abrupt change in water temperature (either a rapid increase or decrease) known as "thermal shock". Warm coolant water can also have long term effects on water temperature, increasing the overall temperature of water bodies, including deep water. Seasonality affects how these temperature increases are distributed throughout the water column. Elevated water temperatures decrease oxygen levels, which can kill fish and alter food chain composition, reduce species biodiversity, and foster invasion by new thermophilic species.

View the full Wikipedia page for Thermal pollution
↑ Return to Menu

Power plant in the context of Chemical plant

A chemical plant is an industrial process plant that manufactures (or otherwise processes) chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.

Petrochemical plants (plants using chemicals from petroleum as a raw material or feedstock) are usually located adjacent to an oil refinery to minimize transportation costs for the feedstocks produced by the refinery. Speciality chemical and fine chemical plants are usually much smaller and not as sensitive to location. Tools have been developed for converting a base project cost from one geographic location to another.

View the full Wikipedia page for Chemical plant
↑ Return to Menu

Power plant in the context of Wood ash

Wood ash is the powdery residue remaining after the combustion of wood, such as burning wood in a fireplace, bonfire, or an industrial power plant. It is largely composed of calcium compounds, along with other non-combustible trace elements present in the wood, and has been used for many purposes throughout history.

View the full Wikipedia page for Wood ash
↑ Return to Menu

Power plant in the context of Fouling

Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms (biofouling, organic) or a non-living substance (inorganic). Fouling is usually distinguished from other surface-growth phenomena in that it occurs on a surface of a component, system, or plant performing a defined and useful function and that the fouling process impedes or interferes with this function.

Other terms used in the literature to describe fouling include deposit formation, encrustation, crudding, deposition, scaling, scale formation, slagging, and sludge formation. The last six terms have a more narrow meaning than fouling within the scope of the fouling science and technology, and they also have meanings outside of this scope; therefore, they should be used with caution.

View the full Wikipedia page for Fouling
↑ Return to Menu

Power plant in the context of Krasnoyarsk Dam

The Krasnoyarsk Dam is a 124-metre (407 ft) high concrete gravity dam located on the Yenisey River about 30 kilometres (19 mi) upstream from Krasnoyarsk in Divnogorsk, Russia. It was constructed from 1956 to 1972, and it supplies about 6,000 MW of electricity, mostly used to supply the KrAZ (Krasnoyarsky Aluminievyy Zavod, the Krasnoyarsk Aluminum Plant). Both power and aluminum plants are controlled by the RUSAL company.

Beginning with the opening of the 10th turbine in April 1971, the powerhouse was the world's single largest power plant until the Grand Coulee Dam in Washington state reached 6,181 MW in 1983. The Krasnoyarsk Dam is held to be a landmark symbol of Krasnoyarsk, and it is depicted on the 10-ruble banknote.

View the full Wikipedia page for Krasnoyarsk Dam
↑ Return to Menu

Power plant in the context of Control room

A control room or operations room is a central space where a large physical facility (such as a power plant) or physically dispersed service (such as a network of driverless transit trains) can be monitored and controlled. It is often part of a larger command center.

View the full Wikipedia page for Control room
↑ Return to Menu

Power plant in the context of Peaker plant

Peaking power plants, also known as peaker plants, and occasionally just "peakers", are power plants that generally run only when there is a high demand, known as peak demand, for electricity. Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants, which supply a dependable and consistent amount of electricity, to meet the minimum demand.

Although historically peaking power plants were frequently used in conjunction with coal baseload plants, peaking plants are now used less commonly. Combined cycle gas turbine plants have two or more cycles, the first of which is very similar to a peaking plant, with the second running on the waste heat of the first. That type of plant is often capable of rapidly starting up, albeit at reduced efficiency, and then over some hours transitioning to a more efficient baseload generation mode. Combined cycle plants have similar capital cost per watt to peaking plants, but run for much longer periods, and use less fuel overall, and hence give cheaper electricity.

View the full Wikipedia page for Peaker plant
↑ Return to Menu

Power plant in the context of Capacity factor

The net capacity factor is the unitless ratio of actual electrical energy output over a given period of time to the theoretical maximum electrical energy output over that period. The theoretical maximum energy output of a given installation is defined as that due to its continuous operation at full nameplate capacity over the relevant period. The capacity factor can be calculated for any electricity producing installation, such as a fuel-consuming power plant or one using renewable energy, such as wind, the sun or hydro-electric installations. The average capacity factor can also be defined for any class of such installations and can be used to compare different types of electricity production.

The actual energy output during that period and the capacity factor vary greatly depending on a range of factors. The capacity factor can never exceed the availability factor, or uptime during the period. Uptime can be reduced due to, for example, reliability issues and maintenance, scheduled or unscheduled. Other factors include the design of the installation, its location, the type of electricity production and with it either the fuel being used or, for renewable energy, the local weather conditions. Additionally, the capacity factor can be subject to regulatory constraints and market forces, potentially affecting both its fuel purchase and its electricity sale.

View the full Wikipedia page for Capacity factor
↑ Return to Menu

Power plant in the context of Condenser (heat transfer)

In systems involving heat transfer, a condenser is a heat exchanger used to condense a gaseous substance into a liquid state through cooling. In doing so, the latent heat is released by the substance and transferred to the surrounding environment. Condensers are used for efficient heat rejection in many industrial systems. Condensers can be made according to numerous designs and come in many sizes ranging from rather small (hand-held) to very large (industrial-scale units used in plant processes). For example, a refrigerator uses a condenser to get rid of heat extracted from the interior of the unit to the outside air.

Condensers are used in air conditioning, industrial chemical processes such as distillation, steam power plants, and other heat-exchange systems. The use of cooling water or surrounding air as the coolant is common in many condensers.

View the full Wikipedia page for Condenser (heat transfer)
↑ Return to Menu

Power plant in the context of Electric car

An electric car or electric vehicle (EV) is a passenger automobile that is propelled by an electric traction motor, using electrical energy as the primary source of propulsion. The term normally refers to a plug-in electric vehicle, typically a battery electric vehicle (BEV), which only uses energy stored in on-board battery packs, but broadly may also include plug-in hybrid electric vehicle (PHEV), range-extended electric vehicle (REEV) and fuel cell electric vehicle (FCEV), which can convert electric power from other fuels via a generator or a fuel cell.

Compared to conventional internal combustion engine (ICE) vehicles, electric cars are quieter, more responsive, have superior energy conversion efficiency and no exhaust emissions, as well as a typically lower overall carbon footprint from manufacturing to end of life (even when a fossil-fuel power plant supplying the electricity might add to its emissions). Due to the superior efficiency of electric motors, electric cars also generate less waste heat, thus reducing the need for engine cooling systems that are often large, complicated and maintenance-prone in ICE vehicles.

View the full Wikipedia page for Electric car
↑ Return to Menu

Power plant in the context of Flue gas

Flue gas is the gas exiting to the atmosphere via a flue, which is a pipe or channel for conveying exhaust gases, as from a fireplace, oven, furnace, boiler or steam generator. It often refers to the exhaust gas of combustion at power plants. Technology is available to remove pollutants from flue gas at power plants.

Combustion of fossil fuels is a common source of flue gas. They are usually combusted with ambient air, with the largest part of the flue gas from most fossil-fuel combustion being nitrogen, carbon dioxide, and water vapor.

View the full Wikipedia page for Flue gas
↑ Return to Menu