Postulates of special relativity in the context of "Special Relativity"

Play Trivia Questions online!

or

Skip to study material about Postulates of special relativity in the context of "Special Relativity"




⭐ Core Definition: Postulates of special relativity

Albert Einstein derived the theory of special relativity in 1905, from principles now called the postulates of special relativity. Einstein's formulation is said to only require two postulates, though his derivation implies a few more assumptions.

The idea that special relativity depended only on two postulates, both of which seemed to follow from the theory and experiment of the day, was one of the most compelling arguments for the correctness of the theory (Einstein 1912: "This theory is correct to the extent to which the two principles upon which it is based are correct. Since these seem to be correct to a great extent, ...")

↓ Menu

In this Dossier

Postulates of special relativity in the context of Special relativity

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, "On the Electrodynamics of Moving Bodies", the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference (that is, frames of reference with no acceleration). This is known as the principle of relativity.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.

The first postulate was first formulated by Galileo Galilei (see Galilean invariance).

↑ Return to Menu

Postulates of special relativity in the context of Relativistic mechanics

In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.

As with classical mechanics, the subject can be divided into "kinematics"; the description of motion by specifying positions, velocities and accelerations, and "dynamics"; a full description by considering energies, momenta, and angular momenta and their conservation laws, and forces acting on particles or exerted by particles. There is however a subtlety; what appears to be "moving" and what is "at rest"—which is termed by "statics" in classical mechanics—depends on the relative motion of observers who measure in frames of reference.

↑ Return to Menu