Positional numeral system in the context of Quipu


Positional numeral system in the context of Quipu

Positional numeral system Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Positional numeral system in the context of "Quipu"


⭐ Core Definition: Positional numeral system

Positional notation, also known as place-value notation, positional numeral system, or simply place value, usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred (however, the values may be modified when combined). In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string.

The Babylonian numeral system, base 60, was the first positional system to be developed, and its influence is present today in the way time and angles are counted in tallies related to 60, such as 60 minutes in an hour and 360 degrees in a circle. The Inca used knots tied in a decimal positional system to store numbers and other values in quipu cords.

↓ Menu
HINT:

In this Dossier

Positional numeral system in the context of Abacus

An abacus (pl. abaci or abacuses), also called a counting frame, is a hand-operated calculating tool which was used from ancient times, in the ancient Near East, Europe, China, and Russia, until largely replaced by handheld electronic calculators, during the 1980s, with some ongoing attempts to revive their use. An abacus consists of a two-dimensional array of slidable beads (or similar objects). In their earliest designs, the beads could be loose on a flat surface or sliding in grooves. Later the beads were made to slide on rods and built into a frame, allowing faster manipulation.

Each rod typically represents one digit of a multi-digit number laid out using a positional numeral system such as base ten (though some cultures used different numerical bases). Roman and East Asian abacuses use a system resembling bi-quinary coded decimal, with a top deck (containing one or two beads) representing fives and a bottom deck (containing four or five beads) representing ones. Natural numbers are normally used, but some allow simple fractional components (e.g. 12, 14, and 112 in Roman abacus), and a decimal point can be imagined for fixed-point arithmetic.

View the full Wikipedia page for Abacus
↑ Return to Menu

Positional numeral system in the context of Decimal

The decimal numeral system (also called the base-ten positional numeral system and denary /dnəri/ or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (decimal fractions) of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as decimal notation.

A decimal numeral (also often just decimal or, less correctly, decimal number), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or as in 25.9703 or 3,1415).Decimal may also refer specifically to the digits after the decimal separator, such as in "3.14 is the approximation of π to two decimals".

View the full Wikipedia page for Decimal
↑ Return to Menu

Positional numeral system in the context of Radix

In a positional numeral system, the radix (pl. radices) or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9.

In any standard positional numeral system, a number is conventionally written as (x)y with x as the string of digits and y as its base. For base ten, the subscript is usually assumed and omitted (together with the enclosing parentheses), as it is the most common way to express value. For example, (100)10 is equivalent to 100 (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four.

View the full Wikipedia page for Radix
↑ Return to Menu