Polypeptide chain in the context of Tetrapeptide


Polypeptide chain in the context of Tetrapeptide

Polypeptide chain Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Polypeptide chain in the context of "Tetrapeptide"


⭐ Core Definition: Polypeptide chain

Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. Proteins are polypeptides, i.e. large peptides.

Amino acids comprise peptides as residues. Peptides are usually "linear" with an N-terminal (amine group) and C-terminal (carboxyl group) residue at the ends. Cyclic peptides are a distinct class.

↓ Menu
HINT:

In this Dossier

Polypeptide chain in the context of Protein synthesis

Protein biosynthesis, or protein synthesis, is a core biological process, occurring inside cells, balancing the loss of cellular proteins (via degradation or export) through the production of fresh proteins. Proteins perform a number of critical functions as enzymes, structural proteins or hormones. Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences.

Protein synthesis can be divided broadly into two phases: transcription and translation. During transcription, a section of DNA encoding a protein, known as a gene, is converted into a molecule called messenger RNA (mRNA). This conversion is carried out by enzymes, known as RNA polymerases, in the nucleus of the cell. In eukaryotes, this mRNA is initially produced in a premature form (pre-mRNA) which undergoes post-transcriptional modifications to produce mature mRNA. The mature mRNA is exported from the cell nucleus via nuclear pores to the cytoplasm of the cell for translation to occur. During translation, the mRNA is read by ribosomes which use the nucleotide sequence of the mRNA to determine the sequence of amino acids. The ribosomes catalyze the formation of covalent peptide bonds between the encoded amino acids to form a polypeptide chain.

View the full Wikipedia page for Protein synthesis
↑ Return to Menu

Polypeptide chain in the context of Post-translational modification

In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translate mRNA into polypeptide chains, which may then change to form the mature protein product. PTMs are important components in cell signalling, as for example when prohormones are converted to hormones.

Post-translational modifications can occur on the amino acid side chains or at the protein's C- or N- termini. They can expand the chemical set of the 22 amino acids by changing an existing functional group or adding a new one such as phosphate. Phosphorylation is highly effective for controlling the enzyme activity and is the most common change after translation. Many eukaryotic and prokaryotic proteins also have carbohydrate molecules attached to them in a process called glycosylation, which can promote protein folding and improve stability as well as serving regulatory functions. Attachment of lipid molecules, known as lipidation, often targets a protein or part of a protein attached to the cell membrane.

View the full Wikipedia page for Post-translational modification
↑ Return to Menu

Polypeptide chain in the context of Fibrous protein

In molecular biology, fibrous proteins or scleroproteins are one of the three main classifications of protein structure (alongside globular and membrane proteins). Fibrous proteins are made up of elongated or fibrous polypeptide chains which form filamentous and sheet-like structures. This kind of protein can be distinguished from globular protein by its low solubility in water. In contrast, globular proteins are spherical and generally soluble in water, performing dynamic functions like enzymatic activity or transport. Such proteins serve protective and structural roles by forming connective tissue, tendons, bone matrices, and muscle fiber.

Fibrous proteins consist of many families including keratin, collagen, elastin, fibrin or spidroin. Collagen is the most abundant of these proteins which exists in vertebrate connective tissue including tendon, cartilage, and bone.

View the full Wikipedia page for Fibrous protein
↑ Return to Menu

Polypeptide chain in the context of Protein complex

A protein complex or multiprotein complex is a group of two or more associated polypeptide chains. Protein complexes are distinct from multidomain enzymes, in which multiple catalytic domains are found in a single polypeptide chain.

Protein complexes are a form of quaternary structure. Proteins in a protein complex are linked by non-covalent protein–protein interactions. These complexes are a cornerstone of many (if not most) biological processes. The cell is seen to be composed of modular supramolecular complexes, each of which performs an independent, discrete biological function.

View the full Wikipedia page for Protein complex
↑ Return to Menu

Polypeptide chain in the context of Protein subunit

In structural biology, a protein subunit is a polypeptide chain or single protein molecule that assembles (or "coassembles") with others to form a protein complex.Large assemblies of proteins such as viruses often use a small number of types of protein subunits as building blocks.

A subunit is often named with a Greek or Roman letter, and the numbers of this type of subunit in a protein is indicated by a subscript. For example, ATP synthase has a type of subunit called α. Three of these are present in the ATP synthase molecule, leading to the designation α3. Larger groups of subunits can also be specified, like α3β3-hexamer and c-ring.

View the full Wikipedia page for Protein subunit
↑ Return to Menu

Polypeptide chain in the context of Structural Classification of Proteins database

The Structural Classification of Proteins (SCOP) database is a largely manual classification of protein structural domains based on similarities of their structures and amino acid sequences. A motivation for this classification is to determine the evolutionary relationship between proteins. Proteins with the same shapes but having little sequence or functional similarity are placed in different superfamilies, and are assumed to have only a very distant common ancestor. Proteins having the same shape and some similarity of sequence and/or function are placed in "families", and are assumed to have a closer common ancestor.

Similar to CATH and Pfam databases, SCOP provides a classification of individual structural domains of proteins, rather than a classification of the entire proteins which may include a significant number of different domains.

View the full Wikipedia page for Structural Classification of Proteins database
↑ Return to Menu