Pollutant in the context of "Bioremediation"

Play Trivia Questions online!

or

Skip to study material about Pollutant in the context of "Bioremediation"

Ad spacer

⭐ Core Definition: Pollutant

A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effect, or adversely affects the usefulness of a resource. These can be both naturally forming (i.e. minerals or extracted compounds like oil) or anthropogenic in origin (i.e. manufactured materials or byproducts). Pollutants result in environmental pollution or become of public health concern when they reach a concentration high enough to have significant negative impacts.

A pollutant may cause long- or short-term damage by changing the growth rate of plant or animal species, or by interfering with resources used by humans, human health or wellbeing, or property values. Some pollutants are biodegradable and therefore will not persist in the environment in a long term. However, the degradation products of some pollutants are themselves pollutants such as DDE and DDD produced from the degradation of DDT.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Pollutant in the context of Pollution

Pollution is the introduction of contaminants into the natural environment that cause harm. Pollution can take the form of any substance (solid, liquid, or gas) or energy (such as radioactivity, heat, sound, or light). Pollutants, the components of pollution, can be either foreign substances/energies or naturally occurring contaminants.

Although environmental pollution can be caused by natural events, the word pollution generally implies that the contaminants have a human source, such as manufacturing, extractive industries, poor waste management, transportation or agriculture. Pollution is often classed as point source (coming from a highly concentrated specific site, such as a factory, mine, construction site), or nonpoint source pollution (coming from widespread distributed sources, such as microplastics or agricultural runoff).

↑ Return to Menu

Pollutant in the context of Eco-economic decoupling

In economic and environmental fields, decoupling refers to an economy that would be able to grow without corresponding increases in environmental pressure. In many economies, increasing production (GDP) raises pressure on the environment. An economy that would be able to sustain economic growth while reducing the amount of resources such as water or fossil fuels used and delink environmental deterioration at the same time would be said to be decoupled. Environmental pressure is often measured using emissions of pollutants, and decoupling is often measured by the emission intensity of economic output.

Studies have found that absolute decoupling was rare and that only a few industrialised countries had weak decoupling of GDP from "consumption-based" CO2 production. No evidence was found of national or international economy-wide decoupling in a study in 2020. In cases where evidence of decoupling exists, one proposed explanation is the transition to a service economy. The environmental Kuznets curve is a proposed model for eco-economic decoupling.

↑ Return to Menu

Pollutant in the context of Nonpoint source pollution

Nonpoint source (NPS) pollution refers to diffuse contamination (or pollution) of water or air that does not originate from a single discrete source. This type of pollution is often the cumulative effect of small amounts of contaminants gathered from a large area. It is in contrast to point source pollution which results from a single source. Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage, or hydrological modification (rainfall and snowmelt) where tracing pollution back to a single source is difficult. Nonpoint source water pollution affects a water body from sources such as polluted runoff from agricultural areas draining into a river, or wind-borne debris blowing out to sea. Nonpoint source air pollution affects air quality, from sources such as smokestacks or car tailpipes. Although these pollutants have originated from a point source, the long-range transport ability and multiple sources of the pollutant make it a nonpoint source of pollution; if the discharges were to occur to a body of water or into the atmosphere at a single location, the pollution would be single-point.

Nonpoint source water pollution may derive from many different sources with no specific solutions or changes to rectify the problem, making it difficult to regulate. Nonpoint source water pollution is difficult to control because it comes from the everyday activities of many different people, such as lawn fertilization, applying pesticides, road construction or building construction. Controlling nonpoint source pollution requires improving the management of urban and suburban areas, agricultural operations, forestry operations and marinas.

↑ Return to Menu

Pollutant in the context of Land-use planning

Land use planning or land-use regulation is the process of regulating the use of land by a central authority. Usually, this is done to promote more desirable social and environmental outcomes as well as a more efficient use of resources. More specifically, the goals of modern land use planning often include environmental conservation, restraint of urban sprawl, minimization of transport costs, prevention of land use conflicts, and a reduction in exposure to pollutants. In the pursuit of these goals, planners assume that regulating the use of land will change the patterns of human behavior, and that these changes are beneficial. The first assumption, that regulating land use changes the patterns of human behavior is widely accepted. However, the second assumption – that these changes are beneficial – is contested, and depends on the location and regulations being discussed.

In urban planning, land use planning seeks to order and regulate land use in an efficient and ethical way, thus preventing land use conflicts. Governments use land use planning to manage the development of land within their jurisdictions. In doing so, the governmental unit can plan for the needs of the community while safeguarding natural resources. To this end, it is the systematic assessment of land and water potential, alternatives for land use, and economic and social conditions in order to select and adopt the best land use options. Often one element of a comprehensive plan, a land use plan provides a vision for the future possibilities of development in neighborhoods, districts, cities, or any defined planning area.

↑ Return to Menu

Pollutant in the context of Total dissolved solids

Total dissolved solids (TDS) is a measure of the dissolved combined content of all inorganic and organic substances present in a liquid in molecular, ionized, or micro-granular (colloidal sol) suspended form. TDS are often measured in parts per million (ppm). TDS in water can be measured using a digital meter.

Generally, the operational definition is that the solids must be small enough to survive filtration through a filter with 2-micrometer (nominal size, or smaller) pores. Total dissolved solids are normally discussed only for freshwater systems, as salinity includes some of the ions constituting the definition of TDS. The principal application of TDS is in the study of water quality for streams, rivers, and lakes. Although TDS is not generally considered a primary pollutant (e.g. it is not deemed to be associated with health effects), it is used as an indication of aesthetic characteristics of drinking water and as an aggregate indicator of the presence of a broad array of chemical contaminants.

↑ Return to Menu

Pollutant in the context of Groundwater pollution

Groundwater pollution (also called groundwater contamination) occurs when pollutants are released to the ground and make their way into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant, or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution. Groundwater pollution can occur from on-site sanitation systems, landfill leachate, effluent from wastewater treatment plants, leaking sewers, petrol filling stations, hydraulic fracturing (fracking), or from over application of fertilizers in agriculture. Pollution (or contamination) can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease (water-borne diseases).

The pollutant often produces a contaminant plume within an aquifer. Movement of water and dispersion within the aquifer spreads the pollutant over a wider area. Its advancing boundary, often called a plume edge, can intersect with groundwater wells and surface water, such as seeps and springs, making the water supplies unsafe for humans and wildlife. The movement of the plume, called a plume front, may be analyzed through a hydrological transport model or groundwater model. Analysis of groundwater pollution may focus on soil characteristics and site geology, hydrogeology, hydrology, and the nature of the contaminants. Different mechanisms have influence on the transport of pollutants, e.g. diffusion, adsorption, precipitation, decay, in the groundwater.

↑ Return to Menu

Pollutant in the context of Emission intensity

An emission intensity (also carbon intensity or C.I.) is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP). Emission intensities are used to derive estimates of air pollutant or greenhouse gas emissions based on the amount of fuel combusted, the number of animals in animal husbandry, on industrial production levels, distances traveled or similar activity data. Emission intensities may also be used to compare the environmental impact of different fuels or activities. In some case the related terms emission factor and carbon intensity are used interchangeably. The jargon used can be different, for different fields/industrial sectors; normally the term "carbon" excludes other pollutants, such as particulate emissions. One commonly used figure is carbon intensity per kilowatt-hour (CIPK), which is used to compare emissions from different sources of electrical power.

↑ Return to Menu