Platinum in the context of "Ototoxicity"

Play Trivia Questions online!

or

Skip to study material about Platinum in the context of "Ototoxicity"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Platinum in the context of Silver

Silver is a chemical element; it has symbol Ag (from Latin argentum 'silver') and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. Silver is found in the Earth's crust in the pure, free elemental form ("native silver"), as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a byproduct of copper, gold, lead, and zinc refining.

Silver has long been valued as a precious metal, commonly sold and marketed beside gold and platinum. Silver metal is used in many bullion coins, sometimes alongside gold: while it is more abundant than gold, it is much less abundant as a native metal. Its purity is typically measured on a per-mille basis; a 94%-pure alloy is described as "0.940 fine". As one of the seven metals of antiquity, silver has had an enduring role in most human cultures. In terms of scarcity, silver is the most abundant of the big three precious metals—platinum, gold, and silver—among these, platinum is the rarest with around 139 troy ounces of silver mined for every one ounce of platinum.

↑ Return to Menu

Platinum in the context of Gold

Gold is a chemical element; it has chemical symbol Au (from Latin aurum) and atomic number 79. In its pure form, it is a bright-metallic-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal, a group 11 element, and one of the noble metals. It is one of the least reactive chemical elements, being the second lowest in the reactivity series, with only platinum ranked as less reactive. Gold is solid under standard conditions.

Gold often occurs as the free element (native state), as nuggets or grains, in rocks, veins, and alluvial deposits. It occurs in a solid solution series with the native element silver (as in electrum), naturally alloyed with other metals like copper and palladium, and mineral inclusions such as within pyrite. Less commonly, it occurs in minerals as gold compounds, often with tellurium (gold tellurides).

↑ Return to Menu

Platinum in the context of Metal leaf

A metal leaf, also called composition leaf or schlagmetal, is a thin foil used for gilding and other forms of decoration. Metal leaves can come in many different shades, due to the composition of the metal within the metal leaf. Examples of this variation of shades in metal leaves can be found in Ancient Egyptian gold leaves, as the silver content within the gold leaves could make them appear bright yellow or paler shades of yellow. Some metal leaves may look like gold leaf but do not contain any real gold. This type of metal leaf is often referred to as imitation leaf.

Metal leaves are usually made of gold (including many alloys), silver, copper, aluminium, brass (sometimes called "Dutch metal" typically 85% copper and 15% zinc) or palladium, as well as platinum.

↑ Return to Menu

Platinum in the context of Palladium

Palladium is a chemical element; it has the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), which was thought to be a planet at the time, which was itself named after the epithet of the Greek goddess Athena, acquired by her when she slew Pallas. Palladium, platinum, rhodium, ruthenium, iridium and osmium form together a group of elements referred to as the platinum group metals. They have similar chemical properties, but palladium has the lowest melting point and is the least dense of them.

More than half the supply of palladium and its congener platinum is used in catalytic converters, which convert as much as 90% of the harmful gases in automobile exhaust (hydrocarbons, carbon monoxide, and nitrogen dioxide) into nontoxic substances (nitrogen, carbon dioxide and water vapor). Palladium is also used in electronics, dentistry, medicine, hydrogen purification, chemical applications, electrochemical sensors, electrosynthesis, groundwater treatment, and jewellery. Palladium is a key component of fuel cells, in which hydrogen and oxygen react to produce electricity, heat, and water.

↑ Return to Menu

Platinum in the context of Free element

In chemistry, a free element is a chemical element that is not combined with or chemically bonded to other elements. These may either be chemically inert, or may form bonds with atoms of the same element.

Metals, non-metals, and noble gases can all be found as free elements. Noble gases such as helium and argon are found in the monoatomic state due to the low reactivity of these atoms. Similarly, noble metals such as gold and platinum are also found in the pure state naturally. Non-metals are rarely found as free elements in the solid state — carbon is a notable exception, as it may be found as diamond and graphite. However, they commonly exist as gases, examples of which include molecular oxygen, ozone, and nitrogen, which together make up approximately 99% of the atmosphere. Because of their reactivity, the halogens do not naturally occur in the free elemental state, but they are both widespread and abundant in the form of their halide ions. They are, however, stable in their diatomic forms.

↑ Return to Menu

Platinum in the context of Oxygen sensor

An oxygen sensor is an electronic component that detects the concentration of oxygen molecules in the air or a gas matrix such as in a combustion engine exhaust gas.

For automotive applications, an oxygen sensor is referred to as a lambda sensor, where lambda refers to the air–fuel equivalence ratio, usually denoted by λ). It was developed by Robert Bosch GmbH during the late 1960s under the supervision of Günter Bauman. The original sensing element is made with a thimble-shaped zirconia ceramic coated on both the exhaust and reference sides with a thin layer of platinum and comes in both heated and unheated forms. The planar-style sensor entered the market in 1990 and significantly reduced the mass of the ceramic sensing element, as well as incorporating the heater within the ceramic structure. This resulted in a sensor that started sooner and responded faster.

↑ Return to Menu

Platinum in the context of Precious metal

Precious metals are rare, naturally occurring metallic chemical elements of high economic value. Precious metals, particularly the noble metals, are more corrosion resistant and less chemically reactive than most elements. They are usually ductile and have a high lustre. Historically, precious metals were important as currency but they are now regarded mainly as investment and industrial raw materials. Gold, silver, platinum, and palladium each have an ISO 4217 currency code.

The best known precious metals are the precious coinage metals, which are gold and silver. Although both have industrial uses, they are better known for their uses in art, jewelry, and coinage. Other precious metals include the platinum group metals: ruthenium, rhodium, palladium, osmium, iridium, and platinum, of which platinum is the most widely traded.The demand for precious metals is driven not only by their practical use but also by their role as investments and a store of value. Historically, precious metals have commanded much higher prices than common industrial metals.

↑ Return to Menu

Platinum in the context of Sterling silver

Sterling silver is an alloy composed by weight of 92.5% silver and 7.5% other metals, usually copper. The sterling silver standard has a minimum millesimal fineness of 925.

Fine silver, which is 99.9% pure silver, is relatively soft, so silver is usually alloyed with copper to increase its hardness and strength. Sterling silver is prone to tarnishing, and elements other than copper can be used in alloys to reduce tarnishing, as well as casting porosity and firescale. Such elements include germanium, zinc, platinum, silicon, and boron. Recent examples of these alloys include argentium, sterlium and silvadium.

↑ Return to Menu

Platinum in the context of Native metal

A native metal is any metal that is found pure in its metallic form in nature. Metals that can be found as native deposits singly or in alloys include antimony, arsenic, bismuth, cadmium, chromium, cobalt, indium, iron, manganese, molybdenum, nickel, niobium, rhenium, tantalum, tellurium, tin, titanium, tungsten, vanadium, and zinc, as well as the gold group (gold, copper, lead, aluminium, mercury, silver) and the platinum group (platinum, iridium, osmium, palladium, rhodium, ruthenium). Among the alloys found in native state have been brass, bronze, pewter, German silver, osmiridium, electrum, white gold, silver-mercury amalgam, and gold-mercury amalgam.

Only gold, silver, copper and the platinum group occur native in large amounts. Over geological time scales, very few metals can resist natural weathering processes like oxidation, so mainly the less reactive metals such as gold and platinum are found as native metals. The others usually occur as isolated pockets where a natural chemical process reduces a common compound or ore of the metal, leaving the pure metal behind as small flakes or inclusions.

↑ Return to Menu

Platinum in the context of Heavy metal element

Heavy metals is a controversial and ambiguous term for metallic elements with relatively high densities, atomic weights, or atomic numbers. The criteria used, and whether metalloids are included, vary depending on the author and context, and arguably, the term "heavy metal" should be avoided. A heavy metal may be defined on the basis of density, atomic number, or chemical behaviour. More specific definitions have been published, none of which has been widely accepted. The definitions surveyed in this article encompass up to 96 of the 118 known chemical elements; only mercury, lead, and bismuth meet all of them. Despite this lack of agreement, the term (plural or singular) is widely used in science. A density of more than 5 g/cm is sometimes quoted as a commonly used criterion and is used in the body of this article.

The earliest known metals—common metals such as iron, copper, and tin, and precious metals such as silver, gold, and platinum—are heavy metals. From 1809 onward, light metals, such as magnesium, aluminium, and titanium, were discovered, as well as less well-known heavy metals, including gallium, thallium, and hafnium.

↑ Return to Menu