Plant


Plant
In this Dossier

Plant in the context of Asgard archaea

Asgard archaea (previously known as superphylum "Asgard" or phylum "Asgardarchaeota") are a kingdom belonging to the domain Archaea that contain eukaryotic signature proteins.

After including the kingdom category into ICNP, the only validly published names of this group are kingdom Promethearchaeati and phylum Promethearchaeota. All formerly proposed "phyla" would be de-ranked to classes in this framework. It appears that the eukaryotes, the domain that contains the animals, plants, fungi and protists, emerged within the Promethearchaeati, in a branch containing the "Heimdallarchaeia" [de; es]. This supports the two-domain system of classification over the three-domain system.

View the full Wikipedia page for Asgard archaea
↑ Return to Menu

Plant in the context of Mitochondrion

A mitochondrion (pl.mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. They were discovered by Albert von Kölliker in 1857 in the voluntary muscles of insects. The term mitochondrion, meaning a thread-like granule, was coined by Carl Benda in 1898. The mitochondrion is popularly nicknamed the "powerhouse of the cell", a phrase popularized by Philip Siekevitz in a 1957 Scientific American article of the same name.

View the full Wikipedia page for Mitochondrion
↑ Return to Menu

Plant in the context of Fauna

The Fauna (pl.: faunae or faunas) is the whole of animal life present in a particular region or time. The corresponding terms for plants and fungi are flora and funga, respectively. Flora, fauna, funga and other forms of life are collectively referred to as biota. Zoologists and paleontologists use fauna to refer to a typical collection of animals found in a specific time or place, e.g. the "Sonoran Desert fauna" or the "Burgess Shale fauna". Paleontologists sometimes refer to a sequence of faunal stages, which is a series of rocks all containing similar fossils. The study of animals of a particular region is called faunistics.

View the full Wikipedia page for Fauna
↑ Return to Menu

Plant in the context of Infrakingdom

In biology, a kingdom is the second highest taxonomic rank, just below domain. Kingdoms are divided into smaller groups called phyla (singular phylum).

Traditionally, textbooks from the United States and some of Canada have used a system of six kingdoms (Animalia, Plantae, Fungi, Protista, Archaea/Archaebacteria, and Bacteria or Eubacteria), while textbooks in other parts of the world, such as Bangladesh, Brazil, Greece, India, Pakistan, Spain, and the United Kingdom have used five kingdoms (Animalia, Plantae, Fungi, Protista and Monera).

View the full Wikipedia page for Infrakingdom
↑ Return to Menu

Plant in the context of Evolutionary history of plants

The evolution of plants has resulted in a wide range of complexity, from the earliest algal mats of unicellular archaeplastids evolved through endosymbiosis, through multicellular marine and freshwater green algae, to spore-bearing terrestrial bryophytes, lycopods and ferns, and eventually to the complex seed-bearing gymnosperms and angiosperms (flowering plants) of today. While many of the earliest groups continue to thrive, as exemplified by red and green algae in marine environments, more recently derived groups have displaced previously ecologically dominant ones; for example, the ascendance of flowering plants over gymnosperms in terrestrial environments.

There is evidence that cyanobacteria and multicellular thalloid eukaryotes lived in freshwater communities on land as early as 1 billion years ago, and that communities of complex, multicellular photosynthesizing organisms existed on land in the late Precambrian, around 850 million years ago.

View the full Wikipedia page for Evolutionary history of plants
↑ Return to Menu

Plant in the context of Flora

Flora (pl.: floras or florae) is all the plant life present in a particular region or time, generally the naturally occurring (indigenous) native plants. The corresponding term for animals is fauna, and for fungi, it is funga. Sometimes bacteria and fungi are also referred to as flora as in the terms gut flora or skin flora for purposes of specificity.

View the full Wikipedia page for Flora
↑ Return to Menu

Plant in the context of Neurons

A neuron (American English), neurone (British English), or nerve cell, is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system. They are located in the nervous system and help to receive and conduct impulses. Neurons communicate with other cells via synapses, which are specialized connections that commonly use minute amounts of chemical neurotransmitters to pass the electric signal from the presynaptic neuron to the target cell through the synaptic gap.

Neurons are the main components of nervous tissue in all animals except sponges and placozoans. Plants and fungi do not have nerve cells. Molecular evidence suggests that the ability to generate electric signals first appeared in evolution some 700 to 800 million years ago, during the Tonian period. Predecessors of neurons were the peptidergic secretory cells. They eventually gained new gene modules which enabled cells to create post-synaptic scaffolds and ion channels that generate fast electrical signals. The ability to generate electric signals was a key innovation in the evolution of the nervous system.

View the full Wikipedia page for Neurons
↑ Return to Menu

Plant in the context of Streptophyta

Streptophyta (/strɛpˈtɒfɪtə, ˈstrɛptftə/), informally the streptophytes (/ˈstrɛptəfts/, from the Greek strepto 'twisted', for the morphology of the sperm of some members), is a clade of plants. The composition of the clade varies considerably between authors, but the definition employed here includes land plants and all green algae except the Chlorophyta and the more basal Prasinodermophyta.

View the full Wikipedia page for Streptophyta
↑ Return to Menu

Plant in the context of Viridiplantae

Viridiplantae (lit.'green plants'; kingdom Plantae sensu stricto) is a clade of around 450,000–500,000 species of eukaryotic organisms, most of which obtain their energy by photosynthesis. The green plants are chloroplast-bearing autotrophs that play important primary production roles in both terrestrial and aquatic ecosystems. They include green algae, which are primarily aquatic, and the land plants (embryophytes, Plantae sensu strictissimo), which emerged within freshwater green algae. Green algae traditionally excludes the land plants, rendering them a paraphyletic group, however it is cladistically accurate to think of land plants as a special clade of green algae that evolved to thrive on dry land. Since the realization that the embryophytes emerged from within the green algae, some authors are starting to include them.

Viridiplantae species all have cells with cellulose in their cell walls, and primary chloroplasts derived from endosymbiosis with cyanobacteria that contain chlorophylls a and b and lack phycobilins. Corroborating this, a basal phagotroph Archaeplastida group has been found in the Rhodelphidia. In some classification systems, the group has been treated as a kingdom, under various names, e.g. Viridiplantae, Chlorobionta, or simply Plantae, the latter expanding the traditional plant kingdom of embryophytes to include the green algae. Adl et al., who produced a classification for all eukaryotes in 2005, introduced the name Chloroplastida for this group, reflecting the group having primary chloroplasts. They rejected the name Viridiplantae on the grounds that some of the species are not plants as understood traditionally. Together with Rhodophyta, glaucophytes and other basal groups, Viridiplantae belong to a larger clade called Archaeplastida which in itself is sometimes described as Plantae sensu lato.

View the full Wikipedia page for Viridiplantae
↑ Return to Menu