Planetary orbit in the context of "General theory of relativity"

Play Trivia Questions online!

or

Skip to study material about Planetary orbit in the context of "General theory of relativity"

Ad spacer

⭐ Core Definition: Planetary orbit

In celestial mechanics, an orbit is the curved trajectory of an object under the influence of an attracting force. Known as an orbital revolution, examples include the trajectory of a planet around a star, a natural satellite around a planet, or an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

For most situations, orbital motion is adequately approximated by Newtonian mechanics, which explains gravity as a force obeying an inverse-square law. However, Albert Einstein's general theory of relativity, which accounts for gravity as due to curvature of spacetime, with orbits following geodesics, provides a more accurate calculation and understanding of the exact mechanics of orbital motion.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Planetary orbit in the context of Centrifugal force

In Newtonian mechanics, a centrifugal force is a kind of fictitious force (or inertial force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed perpendicularly from the axis of rotation of the frame. The magnitude of the centrifugal force F on an object of mass m at the perpendicular distance ρ from the axis of a rotating frame of reference with angular velocity ω is .

The concept of centrifugal force simplifies the analysis of rotating devices by adopting a co-rotating frame of reference, such as in centrifuges, centrifugal pumps, centrifugal governors, and centrifugal clutches, and in centrifugal railways, planetary orbits and banked curves. The same centrifugal effect observed on rotating devices can be analyzed in an inertial reference frame as a consequence of inertia and the physical forces without invoking a centrifugal force.

↑ Return to Menu

Planetary orbit in the context of Roche limit

In celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal forces exceed the second body's self-gravitation. Inside the Roche limit, orbiting material disperses and forms rings, whereas outside the limit, material tends to coalesce. The Roche radius depends on the radius of the second body and on the ratio of the bodies' densities.

The term is named after Édouard Roche (French: [ʁɔʃ], English: /rɒʃ/ ROSH), the French astronomer who first calculated this theoretical limit in 1848.

↑ Return to Menu

Planetary orbit in the context of Newton's cannonball

Newton's cannonball was a thought experiment Isaac Newton used to hypothesize that the force of gravity was universal, and it was the key force for planetary motion. It appeared in his posthumously published 1728 work De mundi systemate (also published in English as A Treatise of the System of the World).

↑ Return to Menu

Planetary orbit in the context of Dynamical systems theory

Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations by nature of the ergodicity of dynamic systems. When differential equations are employed, the theory is called continuous dynamical systems. From a physical point of view, continuous dynamical systems is a generalization of classical mechanics, a generalization where the equations of motion are postulated directly and are not constrained to be Euler–Lagrange equations of a least action principle. When difference equations are employed, the theory is called discrete dynamical systems. When the time variable runs over a set that is discrete over some intervals and continuous over other intervals or is any arbitrary time-set such as a Cantor set, one gets dynamic equations on time scales. Some situations may also be modeled by mixed operators, such as differential-difference equations.

This theory deals with the long-term qualitative behavior of dynamical systems, and studies the nature of, and when possible the solutions of, the equations of motion of systems that are often primarily mechanical or otherwise physical in nature, such as planetary orbits and the behaviour of electronic circuits, as well as systems that arise in biology, economics, and elsewhere. Much of modern research is focused on the study of chaotic systems and bizarre systems.

↑ Return to Menu

Planetary orbit in the context of James Croll

James Croll, FRS, (2 January 1821 – 15 December 1890) was a Scottish scientist who developed a theory of climate variability based on changes in the Earth's orbit.

↑ Return to Menu