Plagioclase in the context of Dynamic metamorphism


Plagioclase in the context of Dynamic metamorphism

Plagioclase Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Plagioclase in the context of "Dynamic metamorphism"


⭐ Core Definition: Plagioclase

Plagioclase (/ˈplæ(i)əˌkls, ˈpl-, -ˌklz/ PLAJ-(ee)-ə-klayss, PLAYJ-, -⁠klayz) is a series of tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more properly known as the plagioclase feldspar series. This was first shown by the German mineralogist Johann Friedrich Christian Hessel (1796–1872) in 1826. The series ranges from albite to anorthite endmembers (with respective compositions NaAlSi3O8 to CaAl2Si2O8), where sodium and calcium atoms can substitute for each other in the mineral's crystal lattice structure. Plagioclase in hand samples is often identified by its polysynthetic crystal twinning or "record-groove" effect.

Plagioclase is a major constituent mineral in Earth's crust and is consequently an important diagnostic tool in petrology for identifying the composition, origin and evolution of igneous rocks. Plagioclase is also a major constituent of rock in the highlands of the Moon. Analysis of thermal emission spectra from the surface of Mars suggests that plagioclase is the most abundant mineral in the crust of Mars.

↓ Menu
HINT:

In this Dossier

Plagioclase in the context of Dacite

Dacite (/ˈdst/) is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

Dacite is relatively common, occurring in many tectonic settings. It is associated with andesite and rhyolite as part of the subalkaline tholeiitic and calc-alkaline magma series.

View the full Wikipedia page for Dacite
↑ Return to Menu

Plagioclase in the context of Aphanitic

Aphanites (adj. aphanitic; from Ancient Greek αφανης (aphanḗs) 'invisible') are igneous rocks that are so fine-grained that their component mineral crystals are not visible to the naked eye (in contrast to phanerites, in which the crystals are visible to the unaided eye). This geological texture results from rapid cooling in volcanic or hypabyssal (shallow subsurface) environments. As a rule, the texture of these rocks is not the same as that of volcanic glass (e.g., obsidian), with volcanic glass being non-crystalline (amorphous), and having a glass-like appearance.

Aphanites are commonly porphyritic, having large crystals embedded in the fine groundmass, or matrix. The larger inclusions are called phenocrysts. They consist essentially of very small crystals of minerals such as plagioclase feldspar, with hornblende or augite, and may contain also biotite, quartz, and orthoclase.

View the full Wikipedia page for Aphanitic
↑ Return to Menu

Plagioclase in the context of Andesite

Andesite (/ˈændəzt/) is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predominantly of sodium-rich plagioclase plus pyroxene or hornblende.

Andesite is the extrusive equivalent of plutonic diorite. Characteristic of subduction zones, andesite represents the dominant rock type in island arcs. The average composition of the continental crust is andesitic. Along with basalts, andesites are a component of the Martian crust.

View the full Wikipedia page for Andesite
↑ Return to Menu

Plagioclase in the context of Rhyolite

Rhyolite (/ˈr.əlt/ RY-ə-lyte) is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent of granite.

Its high silica content makes rhyolitic magma extremely viscous. This favors explosive eruptions over effusive eruptions, so this type of magma is more often erupted as pyroclastic rock than as lava flows. Rhyolitic ash-flow tuffs are among the most voluminous of continental igneous rock formations.

View the full Wikipedia page for Rhyolite
↑ Return to Menu

Plagioclase in the context of Feldspar

Feldspar (/ˈfɛl(d).ˌspɑːr/ FEL(D)-spar; sometimes spelled felspar) is a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the plagioclase (sodium-calcium) feldspars and the alkali (potassium-sodium) feldspars. Feldspars make up about 60% of the Earth's crust and 41% of the Earth's continental crust by weight.

Feldspars crystallize from magma as both intrusive and extrusive igneous rocks and are also present in many types of metamorphic rock. Rock formed almost entirely of calcic plagioclase feldspar is known as anorthosite. Feldspars are also found in many types of sedimentary rocks.

View the full Wikipedia page for Feldspar
↑ Return to Menu

Plagioclase in the context of Syenite

Syenite is a coarse-grained intrusive igneous rock with a general composition similar to that of granite, but deficient in quartz, which, if present at all, occurs in relatively small concentrations (< 5%). It is considered a granitoid. Some syenites contain larger proportions of mafic components and smaller amounts of felsic material than most granites; those are classed as being of intermediate composition.

The extrusive equivalent of syenite is trachyte.

View the full Wikipedia page for Syenite
↑ Return to Menu

Plagioclase in the context of Granite

Granite (/ˈɡræ.nɪt/, GRAN-it) is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.

Granite is typical of a larger family of granitic rocks, or granitoids, that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by the relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though a few (known as leucogranites) contain almost no dark minerals.

View the full Wikipedia page for Granite
↑ Return to Menu

Plagioclase in the context of Porphyry (geology)

Porphyry (/ˈpɔːrfəri/ POR-fə-ree) is any of various granites or igneous rocks with coarse-grained crystals such as feldspar or quartz dispersed in a fine-grained silicate-rich, generally aphanitic matrix or groundmass. In its non-geologic, traditional use, the term porphyry usually refers to the purple-red form of this stone, valued for its appearance, but other colours of decorative porphyry are also used such as "green", "black" and "grey".

The term porphyry is from the Ancient Greek πορφύρα (porphyra), meaning "purple". Purple was the colour of royalty, and the Roman "imperial porphyry" was a deep purple igneous rock with large crystals of plagioclase. Some authors claimed the rock was the hardest known in antiquity. Thus porphyry was prized for monuments and building projects in Imperial Rome and thereafter.

View the full Wikipedia page for Porphyry (geology)
↑ Return to Menu

Plagioclase in the context of Felsic

In geology, felsic is a modifier describing igneous rocks that are relatively rich in elements that form feldspar and quartz. It is contrasted with mafic rocks, which are richer in magnesium and iron. Felsic refers to silicate minerals, magma, and rocks which are enriched in the lighter elements such as silicon, oxygen, aluminium, sodium, and potassium. Molten felsic magma and lava is more viscous than molten mafic magma and lava. Felsic magmas and lavas have lower temperatures of melting and solidification than mafic magmas and lavas.

Felsic rocks are usually light in color and have specific gravities less than 3. The most common felsic rock is granite. Common felsic minerals include quartz, muscovite, orthoclase, and the sodium-rich plagioclase feldspars (albite-rich).

View the full Wikipedia page for Felsic
↑ Return to Menu

Plagioclase in the context of Mafic

A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include basalt, diabase and gabbro. Mafic rocks often also contain calcium-rich varieties of plagioclase feldspar. Mafic materials can also be described as ferromagnesian.

View the full Wikipedia page for Mafic
↑ Return to Menu

Plagioclase in the context of Troctolite

Troctolite /ˈtrɒktəlt/ (from Greek τρώκτης 'trout' and λίθος 'stone') is a mafic intrusive rock type. It consists essentially of major but variable amounts of olivine and calcic plagioclase along with minor pyroxene. It is an olivine-rich anorthosite, or a pyroxene-depleted relative of gabbro. However, unlike gabbro, no troctolite corresponds in composition to a partial melt of peridotite. Thus, troctolite is necessarily a cumulate of crystals that have fractionated from melt.

Troctolite is found in some layered intrusions such as in the Archean Windimurra intrusion of Western Australia, the Voisey's Bay nickel-copper-cobalt magmatic sulfide deposit of northern Labrador, the Stillwater igneous complex of Montana, the Duluth Complex of the North American Midcontinent Rift, and the Tertiary Rhum layered intrusion of the island of Rùm, Scotland. Troctolite is also found, for example, in the Merensky Reef of the Bushveld Igneous Complex, South Africa and in the Lizard complex in Cornwall.

View the full Wikipedia page for Troctolite
↑ Return to Menu

Plagioclase in the context of Upper mantle

The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about 10 km (6.2 mi) under the oceans, and about 35 km (22 mi) under the continents) and ends at the top of the lower mantle, at about 670 km (420 mi). Temperatures range from around 900 K (627 °C; 1,160 °F) at the upper boundary with the crust to around 1,200 K (930 °C; 1,700 °F) at the boundary with the lower mantle. Upper mantle material that has come up onto the surface comprises about 55% olivine, 35% pyroxene, and 5–10% of calcium oxide and aluminum oxide minerals such as plagioclase, spinel, or garnet, depending on depth.

View the full Wikipedia page for Upper mantle
↑ Return to Menu

Plagioclase in the context of Lunar crust

Having a mean density of 3,346.4 kg/m, the Moon is a differentiated body, being composed of a geochemically distinct crust, mantle, and planetary core. This structure is believed to have resulted from the fractional crystallization of a magma ocean shortly after its formation about 4.5 billion years ago. The energy required to melt the outer portion of the Moon is commonly attributed to a giant impact event that is postulated to have formed the Earth-Moon system, and the subsequent reaccretion of material in Earth orbit. Crystallization of this magma ocean would have given rise to a mafic mantle and a plagioclase-rich crust.

Geochemical mapping from orbit implies that the crust of the Moon is largely anorthositic in composition, consistent with the magma ocean hypothesis. In terms of elements, the lunar crust is composed primarily of oxygen, silicon, magnesium, iron, calcium, and aluminium, but important minor and trace elements such as titanium, uranium, thorium, potassium, sulphur, manganese, chromium, and hydrogen are present as well. Based on geophysical techniques, the crust is estimated to be on average about 50 km thick.

View the full Wikipedia page for Lunar crust
↑ Return to Menu

Plagioclase in the context of Peridotite

Peridotite (US: /ˈpɛrɪdˌtt, pəˈrɪdə-/ PERR-ih-doh-tyte, pə-RID-ə-) is a dense, phaneritic (coarse-grained) igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

Peridotite is the dominant rock of the upper part of Earth's mantle. The compositions of peridotite nodules found in certain basalts are of special interest along with diamond pipes (kimberlite), because they provide samples of Earth's mantle brought up from depths ranging from about 30 km to 200 km or more. Some of the nodules preserve isotope ratios of osmium and other elements that record processes that occurred when Earth was formed, and so they are of special interest to paleogeologists because they provide clues to the early composition of Earth's mantle and the complexities of the processes that occurred.

View the full Wikipedia page for Peridotite
↑ Return to Menu

Plagioclase in the context of Matrix (geology)

The matrix or groundmass of a rock is the finer-grained mass of material in which larger grains, crystals, or clasts are embedded.

The matrix of an igneous rock consists of finer-grained, often microscopic, crystals in which larger crystals, called phenocrysts, are embedded. This porphyritic texture is indicative of multi-stage cooling of magma. For example, porphyritic andesite will have large phenocrysts of plagioclase in a fine-grained matrix. Also in South Africa, diamonds are often mined from a matrix of weathered clay-like rock (kimberlite) called "yellow ground".

View the full Wikipedia page for Matrix (geology)
↑ Return to Menu

Plagioclase in the context of Phenocryst

A phenocryst is an early forming, relatively large and usually conspicuous crystal distinctly larger than the grains of the rock groundmass of an igneous rock. Such rocks that have a distinct difference in the size of the crystals are called porphyries, and the adjective porphyritic is used to describe them. Phenocrysts often have euhedral forms, either due to early growth within a magma, or by post-emplacement recrystallization. Normally the term phenocryst is not used unless the crystals are directly observable, which is sometimes stated as greater than 0.5 mm (0.020 in) in diameter. Phenocrysts below this level, but still larger than the groundmass crystals, are termed microphenocrysts. Very large phenocrysts are termed megaphenocrysts. Some rocks contain both microphenocrysts and megaphenocrysts. In metamorphic rocks, crystals similar to phenocrysts are called porphyroblasts.

Phenocrysts are more often found in the lighter (higher silica) igneous rocks such as felsites and andesites, although they occur throughout the igneous spectrum including in the ultramafics. The largest crystals found in some pegmatites are often phenocrysts being significantly larger than the other minerals.

View the full Wikipedia page for Phenocryst
↑ Return to Menu