Phosphate mineral in the context of "Environmental effects of mining"

⭐ In the context of environmental effects of mining, phosphate mineral extraction is considered particularly impactful due to its association with…

Ad spacer

⭐ Core Definition: Phosphate mineral

Phosphate minerals are minerals that contain the tetrahedrally coordinated phosphate (PO3−4) anion, sometimes with arsenate (AsO3−4) and vanadate (VO3−4) substitutions, along with chloride (Cl), fluoride (F), and hydroxide (OH) anions, that also fit into the crystal structure.

The phosphate class of minerals is a large and diverse group, however, only a few species are relatively common.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Phosphate mineral in the context of Environmental effects of mining

Environmental impact of mining can occur at local, regional, and global scales through direct and indirect mining practices. Mining can cause erosion, sinkholes, loss of biodiversity, or the contamination of soil, groundwater, and surface water by chemicals emitted from mining processes. These processes also affect the atmosphere through carbon emissions which contributes to climate change.

Some mining methods (lithium mining, phosphate mining, coal mining, mountaintop removal mining, and sand mining) may have such significant environmental and public health effects that mining companies in some countries are required to follow strict environmental and rehabilitation codes to ensure that the mined area returns to its original state. Mining can provide various advantages to societies, yet it can also spark conflicts, particularly regarding land use both above and below the surface.

↓ Explore More Topics
In this Dossier

Phosphate mineral in the context of Oxide mineral

The oxide mineral class includes those minerals in which the oxide anion (O) is bonded to one or more metal alloys. The hydroxide-bearing minerals are typically included in the oxide class. Minerals with complex anion groups such as the silicates, sulfates, carbonates and phosphates are classed separately.

↑ Return to Menu

Phosphate mineral in the context of Brazilianite

Brazilianite, whose name derives from its country of origin, Brazil, is a typically yellow-green phosphate mineral, most commonly found in phosphate-rich pegmatites.

It occurs in the form of perfect crystals grouped in druses, in pegmatites, and is often of precious-stone quality. One noted deposit of brazilianite is in the surroundings of Conselheiro Pena, in Minas Gerais, Brazil.

↑ Return to Menu

Phosphate mineral in the context of Ooid

Ooids (/ˈˌɔɪd/, from Ancient Greek ᾠόν (ōión) 'egg stone') are small (commonly ≤2 mm in diameter), spheroidal, "coated" (layered) sedimentary grains, usually composed of calcium carbonate, but sometimes made up of iron- or phosphate-based minerals. Ooids usually form on the sea floor, most commonly in shallow tropical seas (around the Bahamas, for example, or in the Persian Gulf). After being buried under additional sediment, these ooid grains can be cemented together to form a sedimentary rock called an oolite. Oolites usually consist of calcium carbonate; these belong to the limestone rock family. Pisoids are similar to ooids, but are larger than 2 mm in diameter, often considerably larger, as with the pisoids in the hot springs at Carlsbad (Karlovy Vary) in the Czech Republic. Ooids have been the subject of scientific research for centuries.

↑ Return to Menu

Phosphate mineral in the context of Fluorapatite

Fluorapatite, often with the alternate spelling of fluoroapatite, is a phosphate mineral with the formula Ca5(PO4)3F (calcium fluorophosphate). Fluorapatite is a hard crystalline solid. Although samples can have various colors (green, brown, blue, yellow, violet, or colorless), the pure mineral is colorless, as expected for a material lacking transition metals. Along with hydroxylapatite, it can be a component of tooth enamel, especially in individuals who use fluoridated toothpaste, but for industrial use both minerals are mined in the form of phosphate rock, whose usual mineral composition is primarily fluorapatite but often with significant amounts of the other.

Fluorapatite crystallizes in a hexagonal crystal system. It is often combined as a solid solution with hydroxylapatite (Ca5(PO4)3OH or Ca10(PO4)6(OH)2) in biological matrices. Chlorapatite (Ca5(PO4)3Cl) is another related structure. Industrially, the mineral is an important source of both phosphoric and hydrofluoric acids.

↑ Return to Menu