Pink noise in the context of "Electronic noise"

Play Trivia Questions online!

or

Skip to study material about Pink noise in the context of "Electronic noise"

Ad spacer

⭐ Core Definition: Pink noise

Pink noise, 1f noise, fractional noise or fractal noise is a signal or process with a frequency spectrum such that the power spectral density (power per frequency interval) is inversely proportional to the frequency of the signal. In pink noise, each octave interval (halving or doubling in frequency) carries an equal amount of noise energy.

Pink noise sounds like a waterfall. It is often used to tune loudspeaker systems in professional audio. Pink noise is one of the most commonly observed signals in biological systems.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Pink noise in the context of Electronic noise

In electronics, noise is an unwanted disturbance in an electrical signal.

Noise generated by electronic devices varies greatly as it is produced by several different effects.

↓ Explore More Topics
In this Dossier

Pink noise in the context of Noise

Noise is sound, chiefly unwanted, unintentional, or harmful sound considered unpleasant, loud, or disruptive to mental or hearing faculties. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arises when the brain receives and perceives a sound. Acoustic noise is any sound in the acoustic domain, either deliberate (e.g., music or speech) or unintended.

Noise may also refer to a random or unintended component of an electronic signal, whose effects may not be audible to the human ear and may require instruments for detection. It can also refer to an intentionally produced random signal or spectral noise, such as white noise or pink noise.

↑ Return to Menu

Pink noise in the context of Noise spectrum

In audio engineering, electronics, physics, and many other fields, the color of noise or noise spectrum refers to the power spectrum of a noise signal (a signal produced by a stochastic process). Different colors of noise have significantly different properties. For example, as audio signals they will sound different to human ears, and as images they will have a visibly different texture. Therefore, each application typically requires noise of a specific color. This sense of 'color' for noise signals is similar to the concept of timbre in music (which is also called "tone color"; however, the latter is almost always used for sound, and may consider detailed features of the spectrum).

The practice of naming kinds of noise after colors started with white noise, a signal whose spectrum has equal power within any equal interval of frequencies. That name was given by analogy with white light, which was (incorrectly) assumed to have such a flat power spectrum over the visible range. Other color names, such as pink, red, and blue were then given to noise with other spectral profiles, often (but not always) in reference to the color of light with similar spectra. Some of those names have standard definitions in certain disciplines, while others are informal and poorly defined. Many of these definitions assume a signal with components at all frequencies, with a power spectral density per unit of bandwidth proportional to 1/f  and hence they are examples of power-law noise. For instance, the spectral density of white noise is flat (β = 0), while flicker or pink noise has β = 1, and Brownian noise has β = 2. Blue noise has β = -1.

↑ Return to Menu