Physical science in the context of "Microscopically"

Play Trivia Questions online!

or

Skip to study material about Physical science in the context of "Microscopically"

Ad spacer

⭐ Core Definition: Physical science

Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together is called the "physical sciences".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Physical science in the context of Physical object

In natural language and physical science, a physical object or material object (or simply an object or body) is a contiguous collection of matter, within a defined boundary (or surface), that exists in space and time. Usually contrasted with abstract objects and mental objects.

Also in common usage, an object is not constrained to consist of the same collection of matter. Atoms or parts of an object may change over time. An object is usually meant to be defined by the simplest representation of the boundary consistent with the observations. However the laws of physics only apply directly to objects that consist of the same collection of matter.

↑ Return to Menu

Physical science in the context of Chemistry

Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

In the scope of its subject, chemistry occupies an intermediate position between physics and biology. It is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. For example, chemistry explains aspects of plant growth (botany), the formation of igneous rocks (geology), how atmospheric ozone is formed and how environmental pollutants are degraded (ecology), the properties of the soil on the Moon (cosmochemistry), how medications work (pharmacology), and how to collect DNA evidence at a crime scene (forensics).

↑ Return to Menu

Physical science in the context of Data collection

Data collection or data gathering is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. Data collection is a research component in all study fields, including physical and social sciences, humanities, and business. While methods vary by discipline, the emphasis on ensuring accurate and honest collection remains the same. The goal for all data collection is to capture evidence that allows data analysis to lead to the formulation of credible answers to the questions that have been posed.

Regardless of the field of or preference for defining data (quantitative or qualitative), accurate data collection is essential to maintain research integrity. The selection of appropriate data collection instruments (existing, modified, or newly developed) and delineated instructions for their correct use reduce the likelihood of errors.

↑ Return to Menu

Physical science in the context of Applied physics

Applied physics is the application of physics to solve scientific or engineering problems. It is usually considered a bridge or a connection between physics and engineering."Applied" is distinguished from "pure" by a subtle combination of factors, such as the motivation and attitude of researchers and the nature of the relationship to the technology or science that may be affected by the work. Applied physics is rooted in the fundamental truths and basic concepts of the physical sciences but is concerned with the utilization of scientific principles in practical devices and systems and with the application of physics in other areas of science and high technology.

↑ Return to Menu

Physical science in the context of List of life sciences

This list of life sciences comprises the branches of science that involve the scientific study of life — such as animals (including human beings), microorganisms, and plants. This is one of the two major branches of natural science, the other being physical science, which is concerned with non-living matter. Biology is the overall natural science that studies life, with the other life sciences as its sub-disciplines.

Some life sciences focus on a specific type of organism. For example, zoology is the study of animals, while botany is the study of plants. Other life sciences focus on aspects common to all or many life forms, such as anatomy and genetics. Some focus on the micro scale (e.g., molecular biology, biochemistry), while others focus on larger scales (e.g., cytology, immunology, ethology, pharmacy, ecology). Another major branch of life sciences involves understanding the mindneuroscience. Life-science discoveries are helpful in improving the quality and standard of life and have applications in health, agriculture, medicine, and the pharmaceutical and food science industries. For example, they have provided information on certain diseases, which has helped in the understanding of human health.

↑ Return to Menu

Physical science in the context of The central science

Chemistry is often called the central science because of its role in connecting the physical sciences, which include chemistry, with the life sciences, pharmaceutical sciences and applied sciences such as medicine and engineering. The nature of this relationship is one of the main topics in the philosophy of chemistry and in scientometrics. The phrase was popularized by its use in a textbook by Theodore L. Brown and H. Eugene LeMay, titled Chemistry: The Central Science, which was first published in 1977, with a fifteenth edition published in 2021.

The central role of chemistry can be seen in the systematic and hierarchical classification of the sciences by Auguste Comte. Each discipline provides a more general framework for the area it precedes (mathematicsastronomyphysics → chemistry → biologysocial sciences). Balaban and Klein have more recently proposed a diagram showing the partial ordering of sciences in which chemistry may be argued is "the central science" since it provides a significant degree of branching. In forming these connections the lower field cannot be fully reduced to the higher ones. It is recognized that the lower fields possess emergent ideas and concepts that do not exist in the higher fields of science.

↑ Return to Menu