Phase-locked loop in the context of Clock signal


Phase-locked loop in the context of Clock signal

Phase-locked loop Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Phase-locked loop in the context of "Clock signal"


⭐ Core Definition: Phase-locked loop

A phase-locked loop (PLL) is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal. Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same; thus, a phase-locked loop can also track an input frequency. Furthermore, by incorporating a frequency divider, a PLL can generate a stable frequency that is a multiple of the input frequency.

These properties are used for clock synchronization, demodulation, frequency synthesis, clock multipliers, and signal recovery from a noisy communication channel. Since 1969, a single integrated circuit can provide a complete PLL building block, and nowadays has output frequencies from a fraction of a hertz up to many gigahertz. Thus, PLLs are widely employed in radio, telecommunications, computers (e.g. to distribute precisely timed clock signals in microprocessors), grid-tie inverters (electronic power converters used to integrate DC renewable resources and storage elements such as photovoltaics and batteries with the power grid), and other electronic applications.

↓ Menu
HINT:

In this Dossier

Phase-locked loop in the context of Non-contact atomic force microscopy

Non-contact atomic force microscopy (nc-AFM), also known as dynamic force microscopy (DFM), is a mode of atomic force microscopy, which itself is a type of scanning probe microscopy. In nc-AFM a sharp probe is moved close (order of angstroms) to the surface under study, the probe is then raster scanned across the surface, the image is then constructed from the force interactions during the scan. The probe is connected to a resonator, usually a silicon cantilever or a quartz crystal resonator. During measurements the sensor is driven so that it oscillates. The force interactions are measured either by measuring the change in amplitude of the oscillation at a constant frequency just off resonance (amplitude modulation) or by measuring the change in resonant frequency directly using a feedback circuit (usually a phase-locked loop) to always drive the sensor on resonance (frequency modulation).

View the full Wikipedia page for Non-contact atomic force microscopy
↑ Return to Menu

Phase-locked loop in the context of Voltage-controlled oscillator

A voltage-controlled oscillator (VCO) is an electronic oscillator whose oscillation frequency is controlled by a voltage input. The applied input voltage determines the instantaneous oscillation frequency. Consequently, a VCO can be used for frequency modulation (FM) or phase modulation (PM) by applying a modulating signal to the control input. A VCO is also an integral part of a phase-locked loop. VCOs are used in synthesizers to generate a waveform whose pitch can be adjusted by a voltage determined by a musical keyboard or other input.

A voltage-to-frequency converter (VFC) is a special type of VCO designed to be very linear in frequency control over a wide range of input control voltages.

View the full Wikipedia page for Voltage-controlled oscillator
↑ Return to Menu