Pharmacologic in the context of Chemical biology


Pharmacologic in the context of Chemical biology

⭐ Core Definition: Pharmacologic

Pharmacology is the science of drugs and medications, including a substance's origin, composition, pharmacokinetics, pharmacodynamics, therapeutic use, and toxicology. More specifically, it is the study of the interactions that occur between a living organism and chemicals that affect normal or abnormal biochemical function. If substances have medicinal properties, they are considered pharmaceuticals.

The field encompasses drug composition and properties, functions, sources, synthesis and drug design, molecular and cellular mechanisms, organ/systems mechanisms, signal transduction/cellular communication, molecular diagnostics, interactions, chemical biology, therapy, medical applications, and antipathogenic capabilities. The two main areas of pharmacology are pharmacodynamics and pharmacokinetics. Pharmacodynamics studies the effects of a drug on biological systems, and pharmacokinetics studies the effects of biological systems on a drug. In broad terms, pharmacodynamics discusses the chemicals with biological receptors, and pharmacokinetics discusses the liberation, absorption, distribution, metabolism, and excretion (LADME) of chemicals from the biological systems.

↓ Menu
HINT:

In this Dossier

Pharmacologic in the context of Biomarker

In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Biomarkers are used in many scientific fields.

View the full Wikipedia page for Biomarker
↑ Return to Menu

Pharmacologic in the context of Ex vivo

Ex vivo (Latin for 'out of the living') refers to biological studies involving tissues, organs, or cells maintained outside their native organism under controlled laboratory conditions. By carefully managing factors such as temperature, oxygenation, nutrient delivery, and perfusing a nutrient solution through the tissue's vasculature, researchers sustain function long enough to conduct experiments that would be difficult or unethical in a living body. Ex vivo models occupy a middle ground between in vitro (lit.'in the glass') models, which typically use isolated cells, and in vivo (lit.'in the living') studies conducted inside living organisms.

Ex vivo platforms support pharmacologic screening, toxicology testing, transplant evaluation, developmental biology, and investigations of disease-mechanism research across medicine and biology, from cardiology and neuroscience to dermatology and orthopedics. Because they often use human tissues obtained from clinical procedures or biobanks, they can reduce reliance on live-animal experimentation; their utility, however, is limited by finite viability, incomplete systemic integration, and post-mortem biochemical changes that accumulate over time. The earliest perfusion studies were conducted in the mid-19th century, and subsequent advances in sterilization, imaging, and microfluidics have facilitated broader adoption into the 20th and 21st centuries. Regulatory oversight depends on specimen origin: human ex vivo research is subject to informed consent, whereas animal-derived models fall under institutional animal care guidelines.

View the full Wikipedia page for Ex vivo
↑ Return to Menu