Peripheral nervous system in the context of Nerve


Peripheral nervous system in the context of Nerve

Peripheral nervous system Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Peripheral nervous system in the context of "Nerve"


⭐ Core Definition: Peripheral nervous system

The peripheral nervous system (PNS) is one of two components that make up the nervous system of bilateral animals, with the other part being the central nervous system (CNS). The PNS consists of nerves and ganglia, which lie outside the brain and the spinal cord. The main function of the PNS is to connect the CNS to the limbs and organs, essentially serving as a relay between the brain and spinal cord and the rest of the body. Unlike the CNS, the PNS is not protected by the vertebral column and skull, or by the blood–brain barrier, which leaves it exposed to toxins.

The peripheral nervous system can be divided into a somatic division and an autonomic division. Each of these can further be differentiated into a sensory and a motor sector. In the somatic nervous system, the cranial nerves are part of the PNS with the exceptions of the olfactory nerve and epithelia and the optic nerve (cranial nerve II) along with the retina, which are considered parts of the central nervous system based on developmental origin. The second cranial nerve is not a true peripheral nerve but a tract of the diencephalon. Cranial nerve ganglia, as with all ganglia, are part of the PNS. The autonomic nervous system exerts involuntary control over smooth muscle and glands.

↓ Menu
HINT:

In this Dossier

Peripheral nervous system in the context of Neurology

Neurology (from Greek: νεῦρον (neûron), "string, nerve" and the suffix -logia, "study of") is the branch of medicine dealing with the diagnosis and treatment of all categories of conditions and disease involving the nervous system, which comprises the brain, the spinal cord and the peripheral nerves. Neurological practice relies heavily on the field of neuroscience, the scientific study of the nervous system, using various techniques of neurotherapy.

A neurologist is a physician specializing in neurology and trained to investigate, diagnose and treat neurological disorders. Neurologists diagnose and treat myriad neurologic conditions, including stroke, epilepsy, movement disorders such as Parkinson's disease, brain infections, autoimmune neurologic disorders such as multiple sclerosis, sleep disorders, brain injury, headache disorders like migraine, tumors of the brain and dementias such as Alzheimer's disease. Neurologists may also have roles in clinical research, clinical trials, and basic or translational research. Neurology is a nonsurgical specialty, its corresponding surgical specialty is neurosurgery.

View the full Wikipedia page for Neurology
↑ Return to Menu

Peripheral nervous system in the context of Neuroscience

Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developmental biology, cytology, psychology, physics, computer science, chemistry, medicine, statistics, and mathematical modeling to understand the fundamental and emergent properties of neurons, glia, and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "epic challenge" of the biological sciences.

The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. The techniques used by neuroscientists have expanded enormously, from molecular and cellular studies of individual neurons to imaging of sensory, motor, and cognitive tasks in the brain.

View the full Wikipedia page for Neuroscience
↑ Return to Menu

Peripheral nervous system in the context of Neuropathology

Neuropathology is the study of disease of nervous system tissue, usually in the form of either small surgical biopsies or whole-body autopsies. Neuropathologists usually work in a department of anatomic pathology, but work closely with the clinical disciplines of neurology, and neurosurgery, which often depend on neuropathology for a diagnosis. Neuropathology also relates to forensic pathology because brain disease or brain injury can be related to cause of death. Neuropathology should not be confused with neuropathy, which refers to disorders of the nerves themselves (usually in the peripheral nervous system) rather than the tissues. In neuropathology, the branches of the specializations of nervous system as well as the tissues come together into one field of study.

View the full Wikipedia page for Neuropathology
↑ Return to Menu

Peripheral nervous system in the context of Nervous system

In biology, the nervous system is the highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes that impact the body, then works in tandem with the endocrine system to respond to such events. Nervous tissue first arose in wormlike organisms about 550 to 600 million years ago. In vertebrates, it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord. The PNS consists mainly of nerves, which are enclosed bundles of the long fibers, or axons, that connect the CNS to every other part of the body. Nerves that transmit signals from the brain are called motor nerves (efferent), while those nerves that transmit information from the body to the CNS are called sensory nerves (afferent). The PNS is divided into two separate subsystems, the somatic and autonomic nervous systems. The autonomic nervous system is further subdivided into the sympathetic, parasympathetic and enteric nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Nerves that exit from the brain are called cranial nerves while those exiting from the spinal cord are called spinal nerves.

The nervous system consists of nervous tissue which, at a cellular level, is defined by the presence of a special type of cell, called the neuron. Neurons have special structures that allow them to send signals rapidly and precisely to other cells. They send these signals in the form of electrochemical impulses traveling along thin fibers called axons, which can be directly transmitted to neighboring cells through electrical synapses or cause chemicals called neurotransmitters to be released at chemical synapses. A cell that receives a synaptic signal from a neuron may be excited, inhibited, or otherwise modulated. The connections between neurons can form neural pathways, neural circuits, and larger networks that generate an organism's perception of the world and determine its behavior. Along with neurons, the nervous system contains other specialized cells called glial cells (or simply glia), which provide structural and metabolic support. Many of the cells and vasculature channels within the nervous system make up the neurovascular unit, which regulates cerebral blood flow in order to rapidly satisfy the high energy demands of activated neurons.

View the full Wikipedia page for Nervous system
↑ Return to Menu

Peripheral nervous system in the context of Neurotoxin

Neurotoxins are toxins that are destructive to nerve tissue (causing neurotoxicity). Neurotoxins are an extensive class of exogenous chemical neurological insults that can adversely affect function in both developing and mature nervous tissue. The term can also be used to classify endogenous compounds, which, when abnormally contacted, can prove neurologically toxic. Though neurotoxins are often neurologically destructive, their ability to specifically target neural components is important in the study of nervous systems. Common examples of neurotoxins include lead, ethanol (drinking alcohol), glutamate, nitric oxide, botulinum toxin (e.g. Botox), tetanus toxin, and tetrodotoxin. Some substances such as nitric oxide and glutamate are in fact essential for proper function of the body and only exert neurotoxic effects at excessive concentrations.

Neurotoxins inhibit neuron control over ion concentrations across the cell membrane, or communication between neurons across a synapse. Local pathology of neurotoxin exposure often includes neuron excitotoxicity or apoptosis but can also include glial cell damage. Macroscopic manifestations of neurotoxin exposure can include widespread central nervous system damage such as intellectual disability, persistent memory impairments, epilepsy, and dementia. Additionally, neurotoxin-mediated peripheral nervous system damage such as neuropathy or myopathy is common. Support has been shown for a number of treatments aimed at attenuating neurotoxin-mediated injury, such as antioxidant and antitoxin administration.

View the full Wikipedia page for Neurotoxin
↑ Return to Menu

Peripheral nervous system in the context of Spinal nerve

A spinal nerve is a mixed nerve, which carries motor, sensory, and autonomic signals between the spinal cord and the body. In the human body there are 31 pairs of spinal nerves, one on each side of the vertebral column. These are grouped into the corresponding cervical, thoracic, lumbar, sacral and coccygeal regions of the spine. There are eight pairs of cervical nerves, twelve pairs of thoracic nerves, five pairs of lumbar nerves, five pairs of sacral nerves, and one pair of coccygeal nerves. The spinal nerves are part of the peripheral nervous system.

View the full Wikipedia page for Spinal nerve
↑ Return to Menu

Peripheral nervous system in the context of Thermoreceptor

A thermoreceptor is a non-specialised sense receptor, or more accurately the receptive portion of a sensory neuron, that codes absolute and relative changes in temperature, primarily within the innocuous range. In the mammalian peripheral nervous system, warmth receptors are thought to be unmyelinated C-fibres (low conduction velocity), while those responding to cold have both C-fibers and thinly myelinated A delta fibers (faster conduction velocity). The adequate stimulus for a warm receptor is warming, which results in an increase in their action potential discharge rate. Cooling results in a decrease in warm receptor discharge rate. For cold receptors their firing rate increases during cooling and decreases during warming. Some cold receptors also respond with a brief action potential discharge to high temperatures, i.e. typically above 45 °C, and this is known as a paradoxical response to heat . The mechanism responsible for this behavior has not been determined.

View the full Wikipedia page for Thermoreceptor
↑ Return to Menu

Peripheral nervous system in the context of Leprosy

Leprosy, also known as Hansen's disease (HD), is a long-term infection by the bacteria Mycobacterium leprae or Mycobacterium lepromatosis. Infection can lead to damage of the nerves, respiratory tract, skin, and eyes. This nerve damage may result in the loss of nociception, which can lead to the loss of parts of a person's extremities from repeated injuries or infection through unnoticed wounds. An infected person may also experience muscle weakness and loss of eyesight. Leprosy symptoms may begin within one year or take 20 years or more.

Leprosy is spread between people, although extensive contact is necessary. Leprosy has a low pathogenicity, and 95% of people who contract or who are exposed to M. leprae do not develop the disease. Spread is likely through a cough or contact with fluid from the nose of a person infected by leprosy. Genetic factors and baseline immune function play a role in how easily a person catches the disease. Leprosy is not spread during pregnancy to the unborn child or through sexual contact. Leprosy occurs more commonly among people living in poverty. There are two main types of the disease—paucibacillary and multibacillary, which differ in the number of bacteria present. A person with paucibacillary disease has five or fewer poorly pigmented, numb skin patches, while a person with multibacillary disease has more than five skin patches. The diagnosis is confirmed by finding acid-fast bacilli in a biopsy of the skin.

View the full Wikipedia page for Leprosy
↑ Return to Menu

Peripheral nervous system in the context of Rabies

Rabies is a viral disease that causes encephalitis in humans and other mammals. It was historically referred to as hydrophobia ("fear of water") because its victims panic when offered liquids to drink. Early symptoms can include fever and abnormal sensations at the site of exposure, which are followed by nausea, vomiting, violent movements, uncontrolled excitement, fear of water, an inability to move parts of the body, confusion, and/or loss of consciousness. Once symptoms appear, the result is virtually always death. The time period between contracting the disease and the start of symptoms is usually one to three months but can vary from less than one week to more than one year. The time depends on the distance the virus must travel along peripheral nerves to reach the central nervous system.

Rabies is caused by lyssaviruses, including the rabies virus and Australian bat lyssavirus. It is spread when an infected animal bites or scratches a human or other animals. Saliva from an infected animal can also transmit rabies if the saliva comes into contact with the eyes, mouth, or nose. Rabies can also be transmitted through tears and nervous tissues. The transmission of rabies by drinking unpasteurized milk from an infected animal is theoretically possible, although not supported by scientific empirical evidence (excluding anecdotal evidence). Globally, dogs are the most common animal involved. In countries where dogs commonly have the disease, more than 99% of rabies cases in humans are the direct result of dog bites. In the Americas, bat bites are the most common source of rabies infections in humans, and less than 5% of cases are from dogs. Rodents are very rarely infected with rabies. The disease can be diagnosed only after the start of symptoms.

View the full Wikipedia page for Rabies
↑ Return to Menu

Peripheral nervous system in the context of Neurosurgery

Neurosurgery or/and neurological surgery, known in common parlance as brain surgery, is the medical specialty that focuses on the surgical treatment or rehabilitation of disorders which affect any portion of the nervous system including the brain, spinal cord, peripheral nervous system, and cerebrovascular system. Neurosurgery as a medical specialty also includes non-surgical management of some neurological conditions.

View the full Wikipedia page for Neurosurgery
↑ Return to Menu

Peripheral nervous system in the context of Axon

An axon (from Greek ἄξων áxōn, axis) or nerve fiber (or nerve fibre: see spelling differences) is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different neurons, muscles, and glands. In certain sensory neurons (pseudounipolar neurons), such as those for touch and warmth, the axons are called afferent nerve fibers and the electrical impulse travels along these from the periphery to the cell body and from the cell body to the spinal cord along another branch of the same axon. Axon dysfunction can be the cause of many inherited and many acquired neurological disorders that affect both the peripheral and central neurons. Nerve fibers are classed into three types – group A nerve fibers, group B nerve fibers, and group C nerve fibers. Groups A and B are myelinated, and group C are unmyelinated. These groups include both sensory fibers and motor fibers. Another classification groups only the sensory fibers as Type I, Type II, Type III, and Type IV.

An axon is one of two types of cytoplasmic protrusions from the cell body of a neuron; the other type is a dendrite. Axons are distinguished from dendrites by several features, including shape (dendrites often taper while axons usually maintain a constant radius), length (dendrites are restricted to a small region around the cell body while axons can be much longer), and function (dendrites receive signals whereas axons transmit them). Some types of neurons have no axon and transmit signals from their dendrites. In some species, axons can emanate from dendrites known as axon-carrying dendrites. No neuron ever has more than one axon; however in invertebrates such as insects or leeches the axon sometimes consists of several regions that function more or less independently of each other.

View the full Wikipedia page for Axon
↑ Return to Menu

Peripheral nervous system in the context of Neuroanatomy

Neuroanatomy is a branch of neuroscience that studies the structure and organization of the nervous system. In contrast to animals with radial symmetry, whose nervous system consists of a distributed network of cells, animals with bilateral symmetry have segregated, defined nervous systems. Their neuroanatomy is therefore better understood. In vertebrates, the nervous system is segregated into the central nervous system (CNS) comprising the brain and spinal cord, and the peripheral nervous system (PNS) comprising the connecting nerves between them. Much of what has informed neuroscientists has come from observing how lesions (damage) to specific brain areas affects behavior or other neural functions.

For information about the composition of non-human animal nervous systems, see nervous system. For information about the typical structure of the human nervous system, see human brain, and peripheral nervous system.

View the full Wikipedia page for Neuroanatomy
↑ Return to Menu

Peripheral nervous system in the context of Nerve tract

A nerve tract is a bundle of nerve fibers (axons) connecting nuclei of the central nervous system. In the peripheral nervous system, this is known as a nerve fascicle, and has associated connective tissue. The main nerve tracts in the central nervous system are of three types: association fibers, commissural fibers, and projection fibers. A nerve tract may also be referred to as a commissure, decussation, or neural pathway. A commissure connects the two cerebral hemispheres at the same levels, while a decussation connects at different levels (crosses obliquely).

View the full Wikipedia page for Nerve tract
↑ Return to Menu

Peripheral nervous system in the context of Nerve fascicle

A nerve fascicle is a bundle of nerve fibers belonging to a nerve in the peripheral nervous system. A nerve fascicle is also called a fasciculus, as is a nerve tract in the central nervous system.

A nerve fascicle is enclosed by perineurium, a layer of fascial connective tissue. Each enclosed nerve fiber in the fascicle is enclosed by a connective tissue layer of endoneurium. Bundles of nerve fascicles are called fasciculi and are constituents of a nerve trunk. A main nerve trunk may contain a great many fascicles enclosing many thousands of axons.

View the full Wikipedia page for Nerve fascicle
↑ Return to Menu

Peripheral nervous system in the context of Nervous tissue

Nervous tissue, also called neural tissue, is the main tissue component of the nervous system. The nervous system regulates and controls body functions and activity. It consists of two parts: the central nervous system (CNS) comprising the brain and spinal cord, and the peripheral nervous system (PNS) comprising the branching peripheral nerves. It is composed of neurons, also known as nerve cells, which receive and transmit impulses to and from it, and neuroglia, also known as glial cells or glia, which assist the propagation of the nerve impulse as well as provide nutrients to the neurons.

Nervous tissue is made up of different types of neurons, all of which have an axon. An axon is the long stem-like part of the cell that sends action potentials to the next cell. Bundles of axons make up the nerves in the PNS and tracts in the CNS.

View the full Wikipedia page for Nervous tissue
↑ Return to Menu

Peripheral nervous system in the context of Glia

Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (the brain and the spinal cord) and in the peripheral nervous system that do not produce electrical impulses. The neuroglia make up more than one half the volume of neural tissue in the human body. They contribute to the maintenance of homeostasis, help form myelin, and provide support and protection for neurons. In the central nervous system, glial cells include oligodendrocytes (that produce myelin), astrocytes, ependymal cells and microglia, and in the peripheral nervous system they include Schwann cells (that produce myelin), and satellite cells.

View the full Wikipedia page for Glia
↑ Return to Menu

Peripheral nervous system in the context of Biological psychopathology

Biological psychopathology is the study of the biological etiology of mental illnesses with a particular emphasis on the genetic and neurophysiological basis of clinical psychology. Biological psychopathology attempts to explain psychiatric disorders using multiple levels of analysis from the genome to brain functioning to behavior. Although closely related to clinical psychology, it is fundamentally an interdisciplinary approach that attempts to synthesize methods across fields such as neuroscience, psychopharmacology, biochemistry, genetics, and physiology. It is known by several alternative names, including "clinical neuroscience" and "experimental psychopathology." Due to the focus on biological processes of the central and peripheral nervous systems, biological psychopathology has been important in developing new biologically-based treatments for mental disorders.

View the full Wikipedia page for Biological psychopathology
↑ Return to Menu