Periodic waveform in the context of "GHz"

Play Trivia Questions online!

or

Skip to study material about Periodic waveform in the context of "GHz"

Ad spacer

⭐ Core Definition: Periodic waveform

A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which are used to describe waves and other repeating phenomena, are periodic. Many aspects of the natural world have periodic behavior, such as the phases of the Moon, the swinging of a pendulum, and the beating of a heart.

The length of the interval over which a periodic function repeats is called its period. Any function that is not periodic is called aperiodic.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Periodic waveform in the context of Terahertz (unit)

The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose formal expression in terms of SI base units is 1/s or s, meaning that one hertz is one per second or the reciprocal of one second. It is used only in the case of periodic events. It is named after Heinrich Rudolf Hertz (1857–1894), the first person to provide conclusive proof of the existence of electromagnetic waves. For high frequencies, the unit is commonly expressed in multiples: kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz).

Some of the unit's most common uses are in the description of periodic waveforms and musical tones, particularly those used in radio- and audio-related applications. It is also used to describe the clock speeds at which computers and other electronics are driven. The units are sometimes also used as a representation of the energy of a photon, via the Planck relation E = , where E is the photon's energy, ν is its frequency, and h is the Planck constant.

↑ Return to Menu

Periodic waveform in the context of Waveform

In electronics, acoustics, and related fields, the waveform of a signal is the shape of its graph as a function of time, independent of its time and magnitude scales and of any displacement in time. Periodic waveforms repeat regularly at a constant period. The term can also be used for non-periodic or aperiodic signals, like chirps and pulses.

In electronics, the term is usually applied to time-varying voltages, currents, or electromagnetic fields. In acoustics, it is usually applied to steady periodic sounds — variations of pressure in air or other media. In these cases, the waveform is an attribute that is independent of the frequency, amplitude, or phase shift of the signal.

↑ Return to Menu