Peptide bonds in the context of Amide


Peptide bonds in the context of Amide

Peptide bonds Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Peptide bonds in the context of "Amide"


⭐ Core Definition: Peptide bonds

In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein chain.

It can also be called a eupeptide bond to distinguish it from an isopeptide bond, which is another type of amide bond between two amino acids.

↓ Menu
HINT:

In this Dossier

Peptide bonds in the context of Protein (nutrient)

Proteins are essential nutrients for the human body. They are one of the constituents of body tissue and also serve as a fuel source. As fuel, proteins have the same energy density as carbohydrates: 17 kJ (4 kcal) per gram. The defining characteristic of protein from a nutritional standpoint is its amino acid composition.

Proteins are polymer chains made of amino acids linked by peptide bonds. During human digestion, proteins are broken down in the stomach into smaller polypeptide chains via hydrochloric acid and protease actions. This is crucial for the absorption of the essential amino acids that cannot be biosynthesized by the body.

View the full Wikipedia page for Protein (nutrient)
↑ Return to Menu

Peptide bonds in the context of Protease

A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism (breakdown of old proteins), and cell signaling.

In the absence of functional accelerants, proteolysis would be very slow, taking hundreds of years. Proteases can be found in all forms of life and viruses. They have independently evolved multiple times, and different classes of protease can perform the same reaction by completely different catalytic mechanisms.

View the full Wikipedia page for Protease
↑ Return to Menu

Peptide bonds in the context of Cyclophilin

Cyclophilins (CYPs) are a family of proteins named after their ability to bind to ciclosporin (cyclosporin A), an immunosuppressant which is usually used to suppress rejection after internal organ transplants. They are found in all domains of life. These proteins have peptidyl prolyl isomerase activity, which catalyzes the isomerization of peptide bonds from trans form to cis form at proline residues and facilitates protein folding.

Cyclophilin A is a cytosolic and highly abundant protein. The protein belongs to a family of isozymes, including cyclophilins B and C, and natural killer cell cyclophilin-related protein. Major isoforms have been found within single cells, including inside the Endoplasmic reticulum, and some are even secreted.

View the full Wikipedia page for Cyclophilin
↑ Return to Menu

Peptide bonds in the context of Collagenase

Collagenases are enzymes that break the peptide bonds in collagen. They assist in destroying extracellular structures in the pathogenesis of bacteria such as Clostridium. They are considered a virulence factor, facilitating the spread of gas gangrene. They normally target the connective tissue in muscle cells and other body organs.

Collagen, a key component of the animal extracellular matrix, is made through cleavage of pro-collagen by collagenase once it has been secreted from the cell. This stops large structures from forming inside the cell itself.

View the full Wikipedia page for Collagenase
↑ Return to Menu