Pearson correlation coefficient in the context of Correlation matrix


Pearson correlation coefficient in the context of Correlation matrix

Pearson correlation coefficient Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Pearson correlation coefficient in the context of "Correlation matrix"


⭐ Core Definition: Pearson correlation coefficient

In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. A key difference is that unlike covariance, this correlation coefficient does not have units, allowing comparison of the strength of the joint association between different pairs of random variables that do not necessarily have the same units. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of children from a school to have a Pearson correlation coefficient significantly greater than 0, but less than 1 (as 1 would represent an unrealistically perfect correlation).

↓ Menu
HINT:

In this Dossier

Pearson correlation coefficient in the context of Correlation and dependence

In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are linearly related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the demand curve.

Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling. However, in general, the presence of a correlation is not sufficient to infer the presence of a causal relationship (i.e., correlation does not imply causation).

View the full Wikipedia page for Correlation and dependence
↑ Return to Menu

Pearson correlation coefficient in the context of Mutual information

In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable.

Not limited to real-valued random variables and linear dependence like the correlation coefficient, MI is more general and determines how different the joint distribution of the pair is from the product of the marginal distributions of and . MI is the expected value of the pointwise mutual information (PMI).

View the full Wikipedia page for Mutual information
↑ Return to Menu

Pearson correlation coefficient in the context of Uncorrelated

In probability theory and statistics, two real-valued random variables, , , are said to be uncorrelated if their covariance, , is zero. If two variables are uncorrelated, there is no linear relationship between them.

Uncorrelated random variables have a Pearson correlation coefficient, when it exists, of zero, except in the trivial case when either variable has zero variance (is a constant). In this case the correlation is undefined.

View the full Wikipedia page for Uncorrelated
↑ Return to Menu

Pearson correlation coefficient in the context of Inversely related

In statistics, there is a negative relationship or inverse relationship between two variables if higher values of one variable tend to be associated with lower values of the other. A negative relationship between two variables usually implies that the correlation between them is negative, or — what is in some contexts equivalent — that the slope in a corresponding graph is negative. A negative correlation between variables is also called inverse correlation.

Negative correlation can be seen geometrically when two normalized random vectors are viewed as points on a sphere, and the correlation between them is the cosine of the circular arc of separation of the points on a great circle of the sphere. When this arc is more than a quarter-circle (θ > π/2), then the cosine is negative. Diametrically opposed points represent a correlation of –1 = cos(π), called anti-correlation. Any two points not in the same hemisphere have negative correlation.

View the full Wikipedia page for Inversely related
↑ Return to Menu

Pearson correlation coefficient in the context of Simple linear regression

In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable. That is, it concerns two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variable.The adjective simple refers to the fact that the outcome variable is related to a single predictor.

It is common to make the additional stipulation that the ordinary least squares (OLS) method should be used: the accuracy of each predicted value is measured by its squared residual (vertical distance between the point of the data set and the fitted line), and the goal is to make the sum of these squared deviations as small as possible. In this case, the slope of the fitted line is equal to the correlation between y and x corrected by the ratio of standard deviations of these variables. The intercept of the fitted line is such that the line passes through the center of mass (x, y) of the data points.

View the full Wikipedia page for Simple linear regression
↑ Return to Menu

Pearson correlation coefficient in the context of Correlations

In statistics, correlation is a kind of statistical relationship between two random variables or bivariate data. Usually it refers to the degree to which a pair of variables are linearly related. In statistics, more general relationships between variables are called an association, the degree to which some of the variability of one variable can be accounted for by the other.

The presence of a correlation is not sufficient to infer the presence of a causal relationship (i.e., correlation does not imply causation).Furthermore, the concept of correlation is not the same as dependence: if two variables are independent, then they are uncorrelated, but the opposite is not necessarily true: even if two variables are uncorrelated, they might be dependent on each other.

View the full Wikipedia page for Correlations
↑ Return to Menu