Paul Dirac in the context of Matrix mechanics


Paul Dirac in the context of Matrix mechanics

Paul Dirac Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Paul Dirac in the context of "Matrix mechanics"


⭐ Core Definition: Paul Dirac

Paul Adrien Maurice Dirac (/dɪˈræk/ dih-RAK; 8 August 1902 – 20 October 1984) was a British theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for both quantum electrodynamics and quantum field theory. He was the Lucasian Professor of Mathematics at the University of Cambridge from 1932 to 1969, and a professor of physics at Florida State University from 1970 to 1984. Dirac shared the 1933 Nobel Prize in Physics with Erwin Schrödinger "for the discovery of new productive forms of atomic theory."

Dirac graduated from the University of Bristol with a First Class Honours Bachelor of Science degree in electrical engineering in 1921, and a first class honours Bachelor of Arts degree in mathematics in 1923. Dirac then graduated from St John's College, Cambridge, with a Ph.D. in Physics in 1926, writing the first ever thesis on quantum mechanics.

↓ Menu
HINT:

In this Dossier

Paul Dirac in the context of Monograph

A monograph is generally a long-form work on one (usually scholarly) subject, or one aspect of a subject, typically created by a single author or artist (or, sometimes, by two or more authors). Traditionally it is in written form and published as a book, but it may be an artwork, audiovisual work, or exhibition made up of visual artworks. In library cataloguing, the word has a specific and broader meaning, while in the United States, the Food and Drug Administration uses the term to mean a set of published standards as well as various guidelines.

View the full Wikipedia page for Monograph
↑ Return to Menu

Paul Dirac in the context of Boson

In particle physics, a boson (/ˈbzɒn/ /ˈbsɒn/) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-integer spin (1/2, 3/2, 5/2, ...). Every observed subatomic particle is either a boson or a fermion. Paul Dirac coined the name boson to commemorate the contribution of Satyendra Nath Bose, an Indian physicist.

Some bosons are elementary particles occupying a special role in particle physics, distinct from the role of fermions (which are sometimes described as the constituents of "ordinary matter"). Certain elementary bosons (e.g. gluons) act as force carriers, which give rise to forces between other particles, while one (the Higgs boson) contributes to the phenomenon of mass. Other bosons, such as mesons, are composite particles made up of smaller constituents.

View the full Wikipedia page for Boson
↑ Return to Menu

Paul Dirac in the context of The Principles of Quantum Mechanics

The Principles of Quantum Mechanics is an influential monograph written by Paul Dirac and first published by Oxford University Press in 1930. In this book, Dirac presents quantum mechanics in a formal, logically consistent, and axiomatic fashion, making the book the first of its kind. Its 82 sections contain 785 equations with no diagrams. Nor does it have an index, a bibliography, or a list of suggestions for further reading. The first half of the book lays down the foundations of quantum mechanics while the second half focuses on its applications. Dirac did not pursue a historical approach to the subject. Nor did he discuss at length the philosophy of quantum mechanics.

View the full Wikipedia page for The Principles of Quantum Mechanics
↑ Return to Menu

Paul Dirac in the context of Theory of everything

A theory of everything (TOE) or final theory is a hypothetical coherent theoretical framework of physics containing all physical principles. The scope of the concept of a "theory of everything" varies. The original technical concept referred to unification of the four fundamental interactions: electromagnetism, strong and weak nuclear forces, and gravity.Finding such a theory of everything is one of the major unsolved problems in physics. Numerous popular books apply the words "theory of everything" to more expansive concepts such as predicting everything in the universe from logic alone, complete with discussions on how this is not possible.

Starting with Isaac Newton's unification of terrestrial gravity, responsible for weight, with celestial gravity, responsible for planetary orbits, concepts in fundamental physics have been successively unified. The phenomena of electricity and magnetism were combined by James Clerk Maxwell's theory of electromagnetism and Albert Einstein's theory of relativity explained how they are connected. By the 1930s, Paul Dirac combined relativity and quantum mechanics and, working with other physicists, developed quantum electrodynamics that combines quantum mechanics and electromagnetism.Work on nuclear and particle physics lead to the discovery of the strong nuclear and weak nuclear forces which were combined in the quantum field theory to implemented the Standard Model of physics, a unification of all forces except gravity. The lone fundamental force not built into the Standard Model is gravity. General relativity provides a theoretical framework for understanding gravity across scales from the laboratory to planets to the complete universe, but it has not been successfully unified with quantum mechanics.

View the full Wikipedia page for Theory of everything
↑ Return to Menu

Paul Dirac in the context of Fermi–Dirac statistics

Fermi–Dirac statistics is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of particles over energy states. It is named after Enrico Fermi and Paul Dirac, each of whom derived the distribution independently in 1926. Fermi–Dirac statistics is a part of the field of statistical mechanics and uses the principles of quantum mechanics.

Fermi–Dirac statistics applies to identical and indistinguishable particles with half-integer spin (1/2, 3/2, etc.), called fermions, in thermodynamic equilibrium. For the case of negligible interaction between particles, the system can be described in terms of single-particle energy states. A result is the Fermi–Dirac distribution of particles over these states where no two particles can occupy the same state, which has a considerable effect on the properties of the system. Fermi–Dirac statistics is most commonly applied to electrons, a type of fermion with spin 1/2.

View the full Wikipedia page for Fermi–Dirac statistics
↑ Return to Menu

Paul Dirac in the context of Satyendra Nath Bose

Satyendra Nath Bose FRS, MP (/ˈbs/; 1 January 1894 – 4 February 1974) was an Indian theoretical physicist and mathematician. He is best known for his work on quantum mechanics in the early 1920s, in developing the foundation for Bose–Einstein statistics, and the theory of the Bose–Einstein condensate. A Fellow of the Royal Society, he was awarded India's second highest civilian award, the Padma Vibhushan, in 1954 by the Government of India.

The eponymous particles class described by Bose's statistics, bosons, were named by Paul Dirac.

View the full Wikipedia page for Satyendra Nath Bose
↑ Return to Menu

Paul Dirac in the context of Antiproton

The antiproton, p, (pronounced p-bar) is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy.

The existence of the antiproton with electric charge of −1 e, opposite to the electric charge of +1 e of the proton, was predicted by Paul Dirac in his 1933 Nobel Prize lecture. Dirac received the Nobel Prize for his 1928 publication of his Dirac equation that predicted the existence of positive and negative solutions to Einstein's energy equation () and the existence of the positron, the antimatter analog of the electron, with opposite charge and spin.

View the full Wikipedia page for Antiproton
↑ Return to Menu

Paul Dirac in the context of Identical particles

In quantum mechanics, indistinguishable particles (also called identical or indiscernible particles) are particles that cannot be distinguished from one another, even in principle. Species of identical particles include, but are not limited to, elementary particles (such as electrons), composite subatomic particles (such as atomic nuclei), as well as atoms and molecules. Although all known indistinguishable particles only exist at the quantum scale, there is no exhaustive list of all possible sorts of particles nor a clear-cut limit of applicability, as explored in quantum statistics. They were first discussed by Werner Heisenberg and Paul Dirac in 1926.

There are two main categories of identical particles: bosons, which can share quantum states, and fermions, which cannot (as described by the Pauli exclusion principle). Examples of bosons are photons, gluons, phonons, helium-4 nuclei and all mesons. Examples of fermions are electrons, neutrinos, quarks, protons, neutrons, and helium-3 nuclei.

View the full Wikipedia page for Identical particles
↑ Return to Menu

Paul Dirac in the context of Second quantization

Second quantization, also referred to as occupation number representation, is a formalism used to describe and analyze quantum many-body systems. In quantum field theory, it is known as canonical quantization, in which the fields (typically as the wave functions of matter) are thought of as field operators, in a manner similar to how the physical quantities (position, momentum, etc.) are thought of as operators in first quantization. The key ideas of this method were introduced in 1927 by Paul Dirac, and were later developed, most notably, by Pascual Jordan and Vladimir Fock.In this approach, the quantum many-body states are represented in the Fock state basis, which are constructed by filling up each single-particle state with a certain number of identical particles. The second quantization formalism introduces the creation and annihilation operators to construct and handle the Fock states, providing useful tools to the study of the quantum many-body theory.

View the full Wikipedia page for Second quantization
↑ Return to Menu

Paul Dirac in the context of History of quantum mechanics

The history of quantum mechanics is a fundamental part of the history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual phenomena—blackbody radiation, the photoelectric effect, solar emission spectra—an era called the Old or Older quantum theories.

Building on the technology developed in classical mechanics, the invention of wave mechanics by Erwin Schrödinger and expansion by many others triggers the "modern" era beginning around 1925. Paul Dirac's relativistic quantum theory work led him to explore quantum theories of radiation, culminating in quantum electrodynamics, the first quantum field theory. The history of quantum mechanics continues in the history of quantum field theory. The history of quantum chemistry, theoretical basis of chemical structure, reactivity, and bonding, interlaces with the events discussed in this article.

View the full Wikipedia page for History of quantum mechanics
↑ Return to Menu

Paul Dirac in the context of Lucasian Professor of Mathematics

The Lucasian Chair of Mathematics (/lˈkziən/) is a mathematics professorship in the University of Cambridge, England; its holder is known as the Lucasian Professor. The post was founded in 1663 by Henry Lucas, who was Cambridge University's Member of Parliament in 1639–1640, and it was officially established by King Charles II on 18 January 1664. It has been called the most celebrated professorship in the world, and the most famous academic chair in the world due to the prestige of many of its holders and the groundbreaking work done by them. It was said by The Daily Telegraph to be one of the most prestigious academic posts in the world. Since its establishment, the professorship has been held by, among others, Isaac Newton, Charles Babbage, George Stokes, Joseph Larmor, Paul Dirac and Stephen Hawking.

View the full Wikipedia page for Lucasian Professor of Mathematics
↑ Return to Menu

Paul Dirac in the context of Dirac Medal (ICTP)

The Dirac Medal of the ICTP is given each year by the International Centre for Theoretical Physics (ICTP) in honour of physicist Paul Dirac. The award, announced each year on 8 August (Dirac's birthday), was first awarded in 1985.

An international committee of distinguished scientists selects the winners from a list of nominated candidates. The Committee invites nominations from scientists working in the fields of theoretical physics or mathematics.

View the full Wikipedia page for Dirac Medal (ICTP)
↑ Return to Menu

Paul Dirac in the context of Spontaneous emission

Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transitions from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount of energy in the form of a photon. If the system in question is excited by some means other than heating, the spontaneous emission is called luminescence. There are different sub-categories of luminescence depending on how excited atoms are produced (electroluminescence, chemiluminescence etc.). If the excitation is affected by the absorption of radiation the spontaneous emission is called fluorescence. Some systems have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.

Spontaneous emission cannot be explained by classical electromagnetic theory and is fundamentally a quantum process. Albert Einstein first predicted the phenomenon of spontaneous emission in a series of papers starting in 1916, culminating in what is now called the Einstein A Coefficient. Einstein's quantum theory of radiation anticipated ideas later expressed in quantum electrodynamics and quantum optics by several decades. Later, after the formal discovery of quantum mechanics in 1926, the rate of spontaneous emission was accurately described from first principles by Paul Dirac in his quantum theory of radiation, the precursor to the theory which he later called quantum electrodynamics. Contemporary physicists, when asked to give a physical explanation for spontaneous emission, generally invoke the zero-point energy of the electromagnetic field. In 1963, the Jaynes–Cummings model was developed describing the system of a two-level atom interacting with a quantized field mode (i.e. the vacuum) within an optical cavity. This model predicted that the rate of spontaneous emission could be controlled depending on the boundary conditions of the surrounding vacuum field. These experiments gave rise to cavity quantum electrodynamics (CQED), the study of effects of mirrors and cavities on radiative corrections.

View the full Wikipedia page for Spontaneous emission
↑ Return to Menu

Paul Dirac in the context of Dirac equation

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to fully account for special relativity in the context of quantum mechanics. The equation is validated by its rigorous accounting of the observed fine structure of the hydrogen spectrum and has become vital in the building of the Standard Model.

The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved. The existence of antimatter was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin. The wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation, which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. In the context of quantum field theory, the Dirac equation is reinterpreted to describe quantum fields corresponding to spin-1/2 particles.

View the full Wikipedia page for Dirac equation
↑ Return to Menu

Paul Dirac in the context of Canonical quantization

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

Historically, this was not quite Werner Heisenberg's route to obtaining quantum mechanics, but Paul Dirac introduced it in his 1926 doctoral thesis, the "method of classical analogy" for quantization, and detailed it in his classic text Principles of Quantum Mechanics. The word canonical arises from the Hamiltonian approach to classical mechanics, in which a system's dynamics is generated via canonical Poisson brackets, a structure which is only partially preserved in canonical quantization.

View the full Wikipedia page for Canonical quantization
↑ Return to Menu

Paul Dirac in the context of Dirac sea

The Dirac sea is a theoretical model of the electron vacuum as an infinite sea of electrons with negative energy, now called positrons. It was first postulated by the British physicist Paul Dirac in 1930 to explain the anomalous negative-energy quantum states predicted by the relativistically correct Dirac equation for electrons. The positron, the antimatter counterpart of the electron, was originally conceived of as a hole in the Dirac sea, before its experimental discovery in 1932.

In hole theory, the solutions with negative time evolution factors are reinterpreted as representing the positron, discovered by Carl Anderson. The interpretation of this result requires a Dirac sea, showing that the Dirac equation is not merely a combination of special relativity and quantum mechanics, but it also implies that the number of particles cannot be conserved.

View the full Wikipedia page for Dirac sea
↑ Return to Menu