Pathogens in the context of "Coinfection"

Play Trivia Questions online!

or

Skip to study material about Pathogens in the context of "Coinfection"

Ad spacer

⭐ Core Definition: Pathogens

In biology, a pathogen (Greek: πάθος, pathos "suffering", "passion" and -γενής, -genēs "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ.

The term pathogen came into use in the 1880s. Typically, the term pathogen is used to describe an infectious microorganism or agent, such as a virus, bacterium, protozoan, prion, viroid, or fungus. Small animals, such as helminths and insects, can also cause or transmit disease. However, these animals are usually referred to as parasites rather than pathogens. The scientific study of microscopic organisms, including microscopic pathogenic organisms, is called microbiology, while parasitology refers to the scientific study of parasites and the organisms that host them.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Pathogens in the context of Fecal–oral route

The fecal–oral route (also called the oral–fecal route or orofecal route) describes a particular route of transmission of a disease wherein pathogens in fecal particles pass from one person to the mouth of another person. Main causes of fecal–oral disease transmission include lack of adequate sanitation (leading to open defecation), and poor hygiene practices. If soil or water bodies are polluted with fecal material, humans can be infected with waterborne diseases or soil-transmitted diseases. Fecal contamination of food is another form of fecal-oral transmission. Washing hands properly after changing a baby's diaper or after performing anal hygiene can prevent foodborne illness from spreading..Toilet flushing & subsequent inhaled aerosols is another potential route.

The common factors in the fecal-oral route can be summarized as five Fs: fingers, flies, fields, fluids, and food. Diseases caused by fecal-oral transmission include typhoid, cholera, polio, hepatitis and many other infections, especially ones that cause diarrhea.

↑ Return to Menu

Pathogens in the context of Pit latrine

A pit latrine, also known as pit toilet, is a type of toilet that collects human waste in a hole in the ground. Urine and feces enter the pit through a drop hole in the floor, which might be connected to a toilet seat or squatting pan for user comfort. Pit latrines can be built to function without water (dry toilet) or they can have a water seal (pour-flush pit latrine). When properly built and maintained, pit latrines can decrease the spread of disease by reducing the amount of human feces in the environment from open defecation. This decreases the transfer of pathogens between feces and food by flies. These pathogens are major causes of infectious diarrhea and intestinal worm infections. Infectious diarrhea resulted in about 700,000 deaths in children under five years old in 2011 and 250 million lost school days. Pit latrines are a low-cost method of separating feces from people.

A pit latrine generally consists of three major parts: a hole in the ground, a concrete slab or floor with a small hole, and a shelter. The shelter is also called an outhouse. The pit is typically at least three meters (10 ft) deep and one meter (3 ft) across. The hole in the slab should not be larger than 25 cm (10 in) to prevent children falling in. Light should be prevented from entering the pit to reduce access by flies. This may require the use of a lid to cover the hole in the floor when not in use. The World Health Organization recommends that pits be built a reasonable distance from the house, ideally balancing easy access against smell. The distance from water wells and surface water should be at least 10 m (30 ft) to decrease the risk of groundwater pollution. When the pit fills to within 0.5 m (1+12 ft) of the top, it should be either emptied or a new pit constructed and the shelter moved or re-built at the new location. Fecal sludge management involves emptying pits as well as transporting, treating and using the collected fecal sludge. If this is not carried out properly, water pollution and public health risks can occur.

↑ Return to Menu

Pathogens in the context of Biological pest control

Biological control or biocontrol is a method of controlling pests, whether pest animals such as insects and mites, weeds, or pathogens affecting animals or plants by using other organisms. It relies on predation, parasitism, herbivory, or other natural mechanisms, but typically also involves an active human management role. It can be an important component of integrated pest management (IPM) programs.

There are three basic strategies for biological control: classical (importation), where a natural enemy of a pest is introduced in the hope of achieving control; inductive (augmentation), in which a large population of natural enemies are administered for quick pest control; and inoculative (conservation), in which measures are taken to maintain natural enemies through regular reestablishment.

↑ Return to Menu

Pathogens in the context of Genetically modified food

Genetically modified foods (GM foods), also known as genetically engineered foods (GE foods), or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using various methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.

The discovery of DNA and the improvement of genetic technology in the 20th century played a crucial role in the development of transgenic technology. In 1988, genetically modified microbial enzymes were first approved for use in food manufacture. Recombinant rennet was used in several countries in the 1990s. Commercial sale of genetically modified foods began in 1994, when Calgene first marketed its later-withdrawn Flavr Savr delayed-ripening tomato. Most food modifications have primarily focused on cash crops in high demand by farmers such as soybean, maize/corn, canola, and cotton. Genetically modified crops have been engineered for resistance to pathogens and herbicides and for better nutrient profiles. The production of golden rice in 2000 represented the first genetically modified crop developed primarily to enhance nutritional value. GM livestock have been developed, although, as of 2015, none were on the market. As of 2015, the AquAdvantage salmon was the only animal approved for commercial production, sale and consumption by the FDA. It is the first genetically modified animal to be approved for human consumption.

↑ Return to Menu

Pathogens in the context of Biological agent

Biological agents, also known as biological weapons or bioweapons, are pathogens used as weapons. In addition to these living or replicating pathogens, toxins and biotoxins are also included among the bio-agents. More than 1,200 different kinds of potentially weaponizable bio-agents have been described and studied to date, and experts expect that in the future it will be possible to design novel biological weapons.

Some biological agents have the ability to adversely affect human health in a variety of ways, ranging from relatively mild allergic reactions to serious medical conditions, including serious injury, as well as serious or permanent disability or death. Many of these organisms are ubiquitous in the natural environment where they are found in water, soil, plants, or animals. Bio-agents may be amenable to "weaponization" to render them easier to deploy or disseminate. Genetic modification may enhance their incapacitating or lethal properties, or render them impervious to conventional treatments or preventives. Since many bio-agents reproduce rapidly and require minimal resources for propagation, they are also a potential danger in a wide variety of occupational settings.

↑ Return to Menu

Pathogens in the context of Food safety

Food safety (or food hygiene) is used as a scientific method/discipline describing handling, preparation, and storage of food in ways that prevent foodborne illness. The occurrence of two or more cases of a similar illness resulting from the ingestion of a common food is known as a food-borne disease outbreak. Food safety includes a number of routines that should be followed to avoid potential health hazards. In this way, food safety often overlaps with food defense to prevent harm to consumers. The tracks within this line of thought are safety between industry and the market and then between the market and the consumer. In considering industry-to-market practices, food safety considerations include the origins of food including the practices relating to food labeling, food hygiene, food additives and pesticide residues, as well as policies on biotechnology and food and guidelines for the management of governmental import and export inspection and certification systems for foods. In considering market-to-consumer practices, the usual thought is that food ought to be safe in the market and the concern is safe delivery and preparation of the food for the consumer. Food safety, nutrition and food security are closely related. Unhealthy food creates a cycle of disease and malnutrition that affects infants and adults as well.

Food can transmit pathogens, which can result in the illness or death of the person or other animals. The main types of pathogens are bacteria, viruses, parasites, and fungus. The WHO Foodborne Disease Epidemiology Reference Group conducted the only study that solely and comprehensively focused on the global health burden of foodborne diseases. This study, which involved the work of over 60 experts for a decade, is the most comprehensive guide to the health burden of foodborne diseases. The first part of the study revealed that 31 foodborne hazards considered priority accounted for roughly 420,000 deaths in LMIC and posed a burden of about 33 million disability adjusted life years in 2010. Food can also serve as a growth and reproductive medium for pathogens. In developed countries there are intricate standards for food preparation, whereas in lesser developed countries there are fewer standards and less enforcement of those standards. In the US, 5,000 deaths per year were related to foodborne pathogens in 1999. Another main issue is simply the availability of adequate safe water, which is usually a critical item in the spreading of diseases. Food poisoning cannot be completely avoided due to the number of persons involved in the supply chain, as well as the fact that pathogens can be introduced into foods no matter how many precautions are taken.

↑ Return to Menu

Pathogens in the context of Epidermis

The epidermis is the outermost of the three layers that comprise the skin, the inner layers being the dermis and hypodermis. The epidermal layer provides a barrier to infection from environmental pathogens and regulates the amount of water released from the body into the atmosphere through transepidermal water loss.

The epidermis is composed of multiple layers of flattened cells that overlie a base layer (stratum basale) composed of perpendicular columnar cells. The layers of cells develop from stem cells in the basal layer. The thickness of the epidermis varies from 31.2 μm for the penis to 596.6 μm for the sole of the foot with most being roughly 90 μm. Thickness does not vary between the sexes but becomes thinner with age. The human epidermis is an example of epithelium, particularly a stratified squamous epithelium.

↑ Return to Menu