Partition (set theory) in the context of Setoid


Partition (set theory) in the context of Setoid

Partition (set theory) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Partition (set theory) in the context of "Setoid"


⭐ Core Definition: Partition (set theory)

In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.

Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory.

↓ Menu
HINT:

In this Dossier

Partition (set theory) in the context of Half-space (geometry)

In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Euclidean space. If the space is two-dimensional, then a half-space is called a half-plane (open or closed). A half-space in a one-dimensional space is called a half-line or ray.

More generally, a half-space is either of the two parts into which a hyperplane divides an n-dimensional space. That is, the points that are not incident to the hyperplane are partitioned into two convex sets (i.e., half-spaces), such that any subspace connecting a point in one set to a point in the other must intersect the hyperplane.

View the full Wikipedia page for Half-space (geometry)
↑ Return to Menu

Partition (set theory) in the context of Orbit (dynamics)

In mathematics, specifically in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. It can be understood as the subset of phase space covered by the trajectory of the dynamical system under a particular set of initial conditions, as the system evolves. As a phase space trajectory is uniquely determined for any given set of phase space coordinates, it is not possible for different orbits to intersect in phase space, therefore the set of all orbits of a dynamical system is a partition of the phase space. Understanding the properties of orbits by using topological methods is one of the objectives of the modern theory of dynamical systems.

For discrete-time dynamical systems, the orbits are sequences; for real dynamical systems, the orbits are curves; and for holomorphic dynamical systems, the orbits are Riemann surfaces.

View the full Wikipedia page for Orbit (dynamics)
↑ Return to Menu

Partition (set theory) in the context of Disjoint union

In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.

A disjoint union of an indexed family of sets is a set often denoted by with an injection of each into such that the images of these injections form a partition of (that is, each element of belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their union.

View the full Wikipedia page for Disjoint union
↑ Return to Menu