Particle size in the context of Grain size


Particle size in the context of Grain size

Particle size Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Particle size in the context of "Grain size"


⭐ Core Definition: Particle size

Particle size is a notion introduced for comparing dimensions of solid particles (flecks), liquid particles (droplets), or gaseous particles (bubbles). The notion of particle size applies to particles in colloids, in ecology, in granular material (whether airborne or not), and to particles that form a granular material (see also grain size).

↓ Menu
HINT:

In this Dossier

Particle size in the context of Particulate

Particulate matter (PM) or particulates are microscopic particles of solid or liquid matter suspended in the air. An aerosol is a mixture of particulates and air, as opposed to the particulate matter alone, though it is sometimes defined as a subset of aerosol terminology. Sources of particulate matter can be natural or anthropogenic. Particulates have impacts on climate and precipitation that adversely affect human health.

Types of atmospheric particles include suspended particulate matter; thoracic and respirable particles; inhalable coarse particles, designated PM10, which are coarse particles with a diameter of 10 micrometers (μm) or less; fine particles, designated PM2.5, with a diameter of 2.5 μm or less; ultrafine particles, with a diameter of 100 nm or less; and soot.

View the full Wikipedia page for Particulate
↑ Return to Menu

Particle size in the context of Sieve

A sieve (/ˈsɪv/), fine mesh strainer, or sift is a tool used for separating wanted elements from unwanted material or for controlling the particle size distribution of a sample, using a screen such as a woven mesh or net or perforated sheet material. The word sift derives from sieve.

In cooking, a sifter is used to separate and break up clumps in dry ingredients such as flour, as well as to aerate and combine them. A strainer (see colander), meanwhile, is a form of sieve used to separate suspended solids from a liquid by filtration.

View the full Wikipedia page for Sieve
↑ Return to Menu

Particle size in the context of Cobble (geology)

A cobble (also sometimes called a cobblestone) is a clast of rock defined on the Udden–Wentworth scale as having a particle size of 64–256 millimeters (2.5–10.1 in), larger than a pebble and smaller than a boulder. Other scales define a cobble's size differently. A rock made predominantly of cobbles is termed a conglomerate. Cobblestone is a building material based on cobbles.

View the full Wikipedia page for Cobble (geology)
↑ Return to Menu

Particle size in the context of Tyndall effect

The Tyndall effect is light scattering by particles in a colloid such as a very fine suspension (a sol). Also known as Tyndall scattering, it is similar to Rayleigh scattering, in that the intensity of the scattered light is inversely proportional to the fourth power of the wavelength, so blue light is scattered much more strongly than red light. An example in everyday life is the blue colour sometimes seen in the smoke emitted by motorcycles, in particular two-stroke machines where the burnt engine oil provides these particles. The same effect can also be observed with tobacco smoke whose fine particles also preferentially scatter blue light.

Under the Tyndall effect, the longer wavelengths are transmitted more, while the shorter wavelengths are more diffusely reflected via scattering. The Tyndall effect is seen when light-scattering particulate matter is dispersed in an otherwise light-transmitting medium, where the diameter of an individual particle is in the range of roughly 40 to 900 nm, i.e. somewhat below or near the wavelengths of visible light (400–750 nm).

View the full Wikipedia page for Tyndall effect
↑ Return to Menu

Particle size in the context of Dust

Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution.

Dust in homes is composed of about 20–50% dead skin cells. The rest, and in offices and other built environments, is composed of small amounts of plant pollen, human hairs, animal fur, textile fibers, paper fibers, minerals from outdoor soil, burnt meteorite particles, and many other materials which may be found in the local environment.

View the full Wikipedia page for Dust
↑ Return to Menu

Particle size in the context of Diatomaceous earth

Diatomaceous earth (/ˌd.ətəˈmʃəs/ DY-ə-tə-MAY-shəs), also known as diatomite (/dˈætəmt/ dy-AT-ə-myte), celite, or kieselguhr, is a naturally occurring, soft, siliceous sedimentary rock that can be crumbled into a fine white to off-white powder. It has a particle size ranging from more than 3 mm to less than 1 μm, but typically 10 to 200 μm. Depending on the granularity, this powder can have an abrasive feel, similar to pumice powder, and has a low density as a result of its high porosity. The typical chemical composition of oven-dried diatomaceous earth is 80–90% silica, with 2–4% alumina (attributed mostly to clay minerals), and 0.5–2% iron oxide.

Diatomaceous earth consists of the fossilized remains of diatoms, a type of hard-shelled microalgae, that have accumulated over millions of years. It is used as a filtration aid, mild abrasive in products including metal polishes and toothpaste, mechanical insecticide, absorbent for liquids, matting agent for coatings, reinforcing filler in plastics and rubber, anti-block in plastic films, porous support for chemical catalysts, cat litter, activator in coagulation studies, a stabilizing component of dynamite, a thermal insulator, and a soil for potted plants and trees as in the art of bonsai. It is also used in gas chromatography packed columns made with glass or metal as stationary phase.

View the full Wikipedia page for Diatomaceous earth
↑ Return to Menu

Particle size in the context of Interplanetary dust

The interplanetary dust cloud, or zodiacal cloud (as the source of the zodiacal light), consists of cosmic dust (small particles floating in outer space) that pervades the space between planets within planetary systems, such as the Solar System. This system of particles has been studied for many years in order to understand its nature, origin, and relationship to larger bodies. There are several methods to obtain space dust measurement.

In the Solar System, interplanetary dust particles have a role in scattering sunlight and in emitting thermal radiation, which is the most prominent feature of the night sky's radiation, with wavelengths ranging 5–50 μm. The particle sizes of grains characterizing the infrared emission near Earth's orbit typically range 10–100 μm. Microscopic impact craters on lunar rocks returned by the Apollo Program revealed the size distribution of cosmic dust particles bombarding the lunar surface. The ’’Grün’’ distribution of interplanetary dust at 1 AU, describes the flux of cosmic dust from nm to mm sizes at 1 AU.

View the full Wikipedia page for Interplanetary dust
↑ Return to Menu

Particle size in the context of Loam

Loam (in geology and soil science) is soil composed mostly of sand (particle size > 63 micrometres (0.0025 in)), silt (particle size > 2 micrometres (7.9×10 in)), and a smaller amount of clay (particle size < 2 micrometres (7.9×10 in)). By weight, its mineral composition is about 40–40–20% concentration of sand–silt–clay, respectively. These proportions can vary to a degree, however, and result in different types of loam soils: sandy loam, silty loam, clay loam, sandy clay loam, silty clay loam, and loam.

In the United States Department of Agriculture, textural classification triangle, the only soil that is not predominantly sand, silt, or clay is called "loam". Loam soils generally contain more nutrients, moisture, and humus than sandy soils, have better drainage and infiltration of water and air than silt- and clay-rich soils, and are easier to till than clay soils. In fact, the primary definition of loam in most dictionaries is soils containing humus (organic content) with no mention of particle size or texture, and this definition is used by many gardeners. The different types of loam soils each have slightly different characteristics, with some draining liquids more efficiently than others. The soil's texture, especially its ability to retain nutrients and water, are crucial. Loam soil is suitable for growing most plant varieties.

View the full Wikipedia page for Loam
↑ Return to Menu

Particle size in the context of Granule (geology)

A granule is a clast of rock with a particle size of 2 to 4 millimetres based on the Krumbein phi scale of sedimentology. Granules are generally considered to be larger than sand (0.0625 to 2 millimetres diameter) and smaller than pebbles (4 to 64 millimetres diameter). A rock made predominantly of granules is termed a granule conglomerate.

View the full Wikipedia page for Granule (geology)
↑ Return to Menu

Particle size in the context of Comminution

Comminution is the reduction of solid materials from one average particle size to a smaller average particle size, by crushing, grinding, cutting, vibrating, or other processes. Comminution is related to pulverization and grinding. All use mechanical devices, and many types of mills have been invented. Concomitant with size reduction, comminution increases the surface area of the solid.

For example, a pulverizer mill is used to pulverize coal for combustion in the steam-generating furnaces of coal power plants. A cement mill produces finely ground ingredients for portland cement. A hammer mill is used on farms for grinding grain and chaff for animal feed. A demolition pulverizer is an attachment for an excavator to break up large pieces of concrete. Comminution is important in mineral processing, where rocks are broken into small particles to help liberate the ore from gangue. Comminution or grinding is also important in ceramics, electronics, and battery research. Mechanical pulping is a traditional way for paper making from wood. The mastication of food involves comminution. From the perspective of chemical engineering, comminution is a unit operation.

View the full Wikipedia page for Comminution
↑ Return to Menu