Parthenogenesis in the context of Bee


Parthenogenesis in the context of Bee

Parthenogenesis Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Parthenogenesis in the context of "Bee"


⭐ Core Definition: Parthenogenesis

Parthenogenesis (/ˌpɑːrθɪnˈɛnɪsɪs, -θɪnə-/; from the Greek παρθένος, parthénos, 'virgin' + γένεσις, génesis, 'creation') is a natural form of asexual reproduction in which the embryo develops directly from an egg without need for fertilization. In animals, parthenogenesis means the development of an embryo from an unfertilized egg cell. In plants, parthenogenesis is a component process of apomixis. In algae, parthenogenesis can mean the development of an embryo from either an individual sperm or an individual egg.

Parthenogenesis is a form of asexual reproduction in which the embryo develops directly from an egg without need for fertilization. It occurs naturally in some plants, algae, invertebrate animal species (including nematodes, some tardigrades, water fleas, some scorpions, aphids, some mites, some bees, some Phasmatodea, and parasitic wasps), and a few vertebrates, such as some fish, amphibians, reptiles, and birds. This type of reproduction has been induced artificially in several animal species that naturally reproduce through sex, including fish, amphibians, and mice.

↓ Menu
HINT:

In this Dossier

Parthenogenesis in the context of Asexual reproduction

Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the full set of genes of their single parent and thus the newly created individual is genetically and physically similar to the parent or an exact clone of the parent. Asexual reproduction is the primary form of reproduction for single-celled organisms such as archaea and bacteria. Many eukaryotic organisms including plants, animals, and fungi can also reproduce asexually. In vertebrates, the most common form of asexual reproduction is parthenogenesis, which is typically used as an alternative to sexual reproduction in times when reproductive opportunities are limited. Some monitor lizards, including Komodo dragons, can reproduce asexually.

While all prokaryotes reproduce without the formation and fusion of gametes, mechanisms for lateral gene transfer such as conjugation, transformation and transduction can be likened to sexual reproduction in the sense of genetic recombination in meiosis.

View the full Wikipedia page for Asexual reproduction
↑ Return to Menu

Parthenogenesis in the context of Cloning

Cloning is the process of producing individual organisms with identical genomes, either by natural or artificial means. In nature, some organisms produce clones through asexual reproduction; this reproduction of an organism by itself without a mate is known as parthenogenesis. In the field of biotechnology, cloning is the process of creating cloned organisms of cells and of DNA fragments.

The artificial cloning of organisms, sometimes known as reproductive cloning, is often accomplished via somatic-cell nuclear transfer (SCNT), a cloning method in which a viable embryo is created from a somatic cell and an egg cell. In 1996, Dolly the sheep achieved notoriety for being the first mammal cloned from a somatic cell. Another example of artificial cloning is molecular cloning, a technique in molecular biology in which a single living cell is used to clone a large population of cells that contain identical DNA molecules.

View the full Wikipedia page for Cloning
↑ Return to Menu

Parthenogenesis in the context of Evolution of sexual reproduction

Sexually reproducing animals, plants, fungi and protists are thought to have evolved from a common ancestor that was a single-celled eukaryotic species. Sexual reproduction is widespread in eukaryotes, though a few eukaryotic species have secondarily lost the ability to reproduce sexually, such as Bdelloidea, and some plants and animals routinely reproduce asexually (by apomixis and parthenogenesis) without entirely having lost sex. The evolution of sexual reproduction contains two related yet distinct themes: its origin and its maintenance. Bacteria and Archaea (prokaryotes) have processes that can transfer DNA from one cell to another (conjugation, transformation, and transduction), but it is unclear if these processes are evolutionarily related to sexual reproduction in Eukaryotes. In eukaryotes, true sexual reproduction by meiosis and cell fusion is thought to have arisen in the last eukaryotic common ancestor, possibly via several processes of varying success, and then to have persisted.

Since hypotheses for the origin of sex are difficult to verify experimentally (outside of evolutionary computation), most current work has focused on the persistence of sexual reproduction over evolutionary time. The maintenance of sexual reproduction (specifically, of its dioecious form) by natural selection in a highly competitive world has long been one of the major mysteries of biology, since both other known mechanisms of reproduction – asexual reproduction and hermaphroditism – possess apparent advantages over it. Asexual reproduction can proceed by budding, fission, or spore formation and does not involve the union of gametes, which accordingly results in a much faster rate of reproduction compared to sexual reproduction, where 50% of offspring are males and unable to produce offspring themselves. In hermaphroditic reproduction, each of the two parent organisms required for the formation of a zygote can provide either the male or the female gamete, which leads to advantages in both size and genetic variance of a population.

View the full Wikipedia page for Evolution of sexual reproduction
↑ Return to Menu

Parthenogenesis in the context of Queen ant

A queen ant (also known as a gyne) is an adult, reproducing female ant in an ant colony; she is usually the mother of all the other ants in that colony. Some female ants, such as the Cataglyphis, do not need to mate to produce offspring, reproducing through asexual parthenogenesis or cloning, and all of those offspring will be female. Others, like those in the genus Crematogaster, mate in a nuptial flight. Queen offspring ants among most species develop from larvae specially fed in order to become sexually mature.

Depending on the species, there can be either a single mother queen, or potentially hundreds of fertile queens. Not every colony of ants has a queen. Some colonies have multiple queens.

View the full Wikipedia page for Queen ant
↑ Return to Menu

Parthenogenesis in the context of Sex-determination system

A sex-determination system is a biological system that determines the development of the organism's sex. Most organisms that create their offspring using sexual reproduction have two common sexes, males and females, and in other species there are hermaphrodites, organisms that can function reproductively as either female or male, or both.

There are also some species in which only one sex is present, temporarily or permanently. This can be due to parthenogenesis, the act of a female reproducing without fertilization, mostly seen in plant species. In some plants or algae the gametophyte stage may reproduce itself, thus producing more individuals of the same sex as the parent.

View the full Wikipedia page for Sex-determination system
↑ Return to Menu

Parthenogenesis in the context of Pseudocopulation

Pseudocopulation is a behavior similar to copulation that serves a reproductive function for one or both participants but does not involve actual sexual union between the individuals. It is most generally applied to a pollinator attempting to copulate with a flower adapted to mimic a potential female mate. The resemblance may be visual, but the key stimuli are often chemical and tactile. The form of mimicry in plants that deceives an insect into pseudocopulation is called Pouyannian mimicry after the French lawyer and amateur botanist Maurice-Alexandre Pouyanne.

A non-mimetic form of pseudocopulation has been observed in some parthenogenetic, all-female species of lizard. The behaviour does not appear to be necessary to trigger parthenogenesis.

View the full Wikipedia page for Pseudocopulation
↑ Return to Menu

Parthenogenesis in the context of Scale insect

Scale insects are small insects of the order Hemiptera, suborder Sternorrhyncha. Of dramatically variable appearance and extreme sexual dimorphism, they comprise the infraorder Coccomorpha which is considered a more convenient grouping than the superfamily Coccoidea due to taxonomic uncertainties. Adult females typically have soft bodies and no limbs, and are concealed underneath domed scales, extruding quantities of wax for protection. Some species are hermaphroditic, with a combined ovotestis instead of separate ovaries and testes. Males, in the species where they occur, have legs and sometimes wings, and resemble small flies. Scale insects are herbivores, piercing plant tissues with their mouthparts and remaining in one place, feeding on sap. The excess fluid they imbibe is secreted as honeydew on which sooty mold tends to grow. The insects often have a mutualistic relationship with ants, which feed on the honeydew and protect them from predators. There are about 8,000 described species.

The oldest fossils of the group date to the Late Jurassic, preserved in amber. They were already substantially diversified by the Early Cretaceous suggesting an earlier origin during the Triassic or Jurassic. Their closest relatives are the jumping plant lice, whiteflies, phylloxera bugs and aphids. The majority of female scale insects remain in one place as adults, with newly hatched nymphs, known as "crawlers", being the only mobile life stage, apart from the short-lived males. The reproductive strategies of many species include at least some amount of asexual reproduction by parthenogenesis.

View the full Wikipedia page for Scale insect
↑ Return to Menu

Parthenogenesis in the context of Mut

Mut (Ancient Egyptian: mut; also transliterated as Maut and Mout) was a mother goddess worshipped in ancient Egypt. Her name means mother in the ancient Egyptian language. Mut had many different aspects and attributes that changed and evolved greatly over the thousands of years of ancient Egyptian culture.

Mut was considered a primal deity, associated with the primordial waters of Nu from which everything in the world was born. Mut was sometimes said to have given birth to the world through parthenogenesis, but more often she was said to have a husband, the solar creator god Amun-Ra. Although Mut was believed by her followers to be the mother of everything in the world, she was particularly associated as the mother of the lunar child god Khonsu. At the Temple of Karnak in Egypt's capital city of Thebes, the family of Amun-Ra, Mut and Khonsu were worshipped together as the Theban Triad.

View the full Wikipedia page for Mut
↑ Return to Menu

Parthenogenesis in the context of Bdelloidea

Bdelloidea /ˈdɛlɔɪdiə/ (from Greek βδέλλα, bdella 'leech') is a class of rotifers found in freshwater habitats all over the world. There are over 450 described species of bdelloid rotifers (or 'bdelloids'), distinguished from each other mainly on the basis of morphology. The main characteristics that distinguish bdelloids from related groups of rotifers are exclusively parthenogenetic reproduction and the ability to survive in dry, harsh environments by entering a state of desiccation-induced dormancy (anhydrobiosis) at any life stage. They are often referred to as "ancient asexuals" due to their unique asexual history that spans back to over 25 million years ago through fossil evidence. Bdelloid rotifers are microscopic organisms, typically between 150 and 700 μm in length. Most are slightly too small to be seen with the naked eye, but appear as tiny white dots through even a weak hand lens, especially in bright light. In June 2021, biologists reported the restoration of bdelloid rotifers after being frozen for 24,000 years in the Siberian permafrost.

View the full Wikipedia page for Bdelloidea
↑ Return to Menu

Parthenogenesis in the context of Aspidoscelis neomexicanus

The New Mexico whiptail (Aspidoscelis neomexicanus) is a female-only species of lizard found in New Mexico and Arizona in the southwestern United States, and in Chihuahua in northern Mexico. It is the official state reptile of New Mexico. It is one of many lizard species known to be parthenogenetic. Individuals of the species can be created either through the hybridization of the little striped whiptail (A. inornatus) and the western whiptail (A. tigris), or through the parthenogenetic reproduction of an adult New Mexico whiptail.

The hybridization of these species prevents healthy males from forming, whereas males exist in one parent species (see sexual differentiation). Parthenogenesis allows the all-female population to reproduce. This combination of interspecific hybridization and parthenogenesis exists as a reproductive strategy in several species of whiptail lizard within the genus Aspidoscelis to which the New Mexico whiptail belongs.

View the full Wikipedia page for Aspidoscelis neomexicanus
↑ Return to Menu

Parthenogenesis in the context of Water flea

The Diplostraca or Cladocera, commonly known as water fleas, is a superorder of small, mostly freshwater crustaceans, most of which feed on microscopic chunks of organic matter, though some forms are predatory.

Over 1000 species have been recognised so far, with many more undescribed. The oldest unequivocal fossils of diplostracans date to the Jurassic, though their modern morphology suggests that they originated substantially earlier, during the Paleozoic. Some have also adapted to a life in the ocean, the only members of Branchiopoda to do so, though several anostracans live in hypersaline lakes. Most are 0.2–6.0 mm (0.01–0.24 in) long, with a down-turned head with a single median compound eye, and a carapace covering the apparently unsegmented thorax and abdomen. Most species show cyclical parthenogenesis, where asexual reproduction is occasionally supplemented by sexual reproduction, which produces resting eggs that allow the species to survive harsh conditions and disperse to distant habitats.

View the full Wikipedia page for Water flea
↑ Return to Menu

Parthenogenesis in the context of Arrhenotoky

Arrhenotoky (from Greek ἄρρην árrhēn "male" and τόκος tókos "birth"), also known as arrhenotokous parthenogenesis, is a form of parthenogenesis in which unfertilized eggs develop into males. In most cases, parthenogenesis produces exclusively female offspring, hence the distinction.

View the full Wikipedia page for Arrhenotoky
↑ Return to Menu