Parametric polymorphism in the context of Type theory


Parametric polymorphism in the context of Type theory

Parametric polymorphism Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Parametric polymorphism in the context of "Type theory"


⭐ Core Definition: Parametric polymorphism

In programming languages and type theory, parametric polymorphism allows a single piece of code to be given a "generic" type, using variables in place of actual types, and then instantiated with particular types as needed. Parametrically polymorphic functions and data types are sometimes called generic functions and generic datatypes, respectively, and they form the basis of generic programming.

Parametric polymorphism may be contrasted with ad hoc polymorphism. Parametrically polymorphic definitions are uniform: they behave identically regardless of the type they are instantiated at. In contrast, ad hoc polymorphic definitions are given a distinct definition for each type. Thus, ad hoc polymorphism can generally only support a limited number of such distinct types, since a separate implementation has to be provided for each type.

↓ Menu
HINT:

In this Dossier

Parametric polymorphism in the context of System F

System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML. It was discovered independently by logician Jean-Yves Girard (1972) and computer scientist John C. Reynolds.

Whereas simply typed lambda calculus has variables ranging over terms, and binders for them, System F additionally has variables ranging over types, and binders for them. As an example, the fact that the identity function can have any type of the form AA would be formalized in System F as the statement

View the full Wikipedia page for System F
↑ Return to Menu

Parametric polymorphism in the context of Simply typed lambda calculus

The simply typed lambda calculus (), a formof type theory, is a typed interpretation of the lambda calculus with only one type constructor () that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus.

The term simple type is also used to refer to extensions of the simply typed lambda calculus with constructs such as products, coproducts or natural numbers (System T) or even full recursion (like PCF). In contrast, systems that introduce polymorphic types (like System F) or dependent types (like the Logical Framework) are not considered simply typed. The simple types, except for full recursion, are still considered simple because the Church encodings of such structures can be done using only and suitable type variables, while polymorphism and dependency cannot.

View the full Wikipedia page for Simply typed lambda calculus
↑ Return to Menu