Paraboloid in the context of "Conic section"

Play Trivia Questions online!

or

Skip to study material about Paraboloid in the context of "Conic section"

Ad spacer

⭐ Core Definition: Paraboloid

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

Every plane section of a paraboloid made by a plane parallel to the axis of symmetry is a parabola. The paraboloid is hyperbolic if every other plane section is either a hyperbola, or two crossing lines (in the case of a section by a tangent plane). The paraboloid is elliptic if every other nonempty plane section is either an ellipse, or a single point (in the case of a section by a tangent plane). A paraboloid is either elliptic or hyperbolic.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Paraboloid in the context of Explosive lens

An explosive lens—as used, for example, in nuclear weapons—is a highly specialized shaped charge. In general, it is a device composed of several explosive charges. These charges are arranged and formed with the intent to control the shape of the detonation wave passing through them. The explosive lens is conceptually similar to an optical lens, which focuses light waves. The charges that make up the explosive lens are chosen to have different rates of detonation. In order to convert a spherically expanding wavefront into a spherically converging one using only a single boundary between the constituent explosives, the boundary shape must be a paraboloid; similarly, to convert a spherically diverging front into a flat one, the boundary shape must be a hyperboloid, and so on. Several boundaries can be used to reduce aberrations (deviations from intended shape) of the final wavefront.

↑ Return to Menu

Paraboloid in the context of Quadric surface

In mathematics, a quadric or quadric surface is a generalization of conic sections (ellipses, parabolas, and hyperbolas). In three-dimensional space, quadrics include ellipsoids, paraboloids, and hyperboloids.

More generally, a quadric hypersurface (of dimension D) embedded in a higher dimensional space (of dimension D + 1) is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D=1 is the case of conic sections (plane curves). When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

↑ Return to Menu

Paraboloid in the context of Riemannian metric

In differential geometry, a Riemannian manifold (or Riemann space) is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds take their name from German mathematician Bernhard Riemann, who first conceptualized them in 1854.

Formally, a Riemannian metric (or just a metric) on a smooth manifold is a smoothly varying choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.

↑ Return to Menu

Paraboloid in the context of Valley of stability

In nuclear physics, the valley of stability (also called the belt of stability, nuclear valley, energy valley, or beta stability valley) is a characterization of the stability of nuclides to radioactivity based on their binding energy. Nuclides are composed of protons and neutrons. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most stable nuclei. The line of stable nuclides down the center of the valley of stability is known as the line of beta stability. The sides of the valley correspond to increasing instability to beta decay (β or β). The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the nuclear drip lines, where nuclides become so unstable they emit single protons or single neutrons. Regions of instability within the valley at high atomic number also include radioactive decay by alpha radiation or spontaneous fission. The shape of the valley is roughly an elongated paraboloid corresponding to the nuclide binding energies as a function of neutron and atomic numbers.

The nuclides within the valley of stability encompass the entire table of nuclides. The chart of those nuclides is also known as a Segrè chart, after the physicist Emilio Segrè. The Segrè chart may be considered a map of the nuclear valley. The region of proton and neutron combinations outside of the valley of stability is referred to as the sea of instability.

↑ Return to Menu