Paper tape in the context of Read-only memory


Paper tape in the context of Read-only memory

Paper tape Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Paper tape in the context of "Read-only memory"


⭐ Core Definition: Paper tape

Punched tape or perforated paper tape is a form of data storage that consists of a long strip of paper through which small holes are punched. It was developed from and was subsequently used alongside punched cards, the difference being that the tape is continuous.

Punched cards, and chains of punched cards, were used for control of looms in the 18th century. Use for telegraphy systems started in 1842. Punched tapes were used throughout the 19th and for much of the 20th centuries for programmable looms, teleprinter communication, for input to computers of the 1950s and 1960s, and later as a storage medium for minicomputers and CNC machine tools. During the Second World War, high-speed punched tape systems using optical readout methods were used in code breaking systems. Punched tape was used to transmit data for manufacture of read-only memory chips.

↓ Menu
HINT:

In this Dossier

Paper tape in the context of Computer keyboard

A computer keyboard is a built-in or peripheral input device modeled after the typewriter keyboard which uses an arrangement of buttons or keys to act as mechanical levers or electronic switches. Replacing early punched cards and paper tape technology, interaction via teleprinter-style keyboards have been the main input method for computers since the 1970s, supplemented by the computer mouse since the 1980s, and the touchscreen since the 2000s.

Keyboard keys (buttons) typically have a set of characters engraved or printed on them, and each press of a key typically corresponds to a single written symbol. However, producing some symbols may require pressing and holding several keys simultaneously or in sequence. While most keys produce characters (letters, numbers or symbols), other keys (such as the escape key) can prompt the computer to execute system commands. In a modern computer, the interpretation of key presses is generally left to the software: the information sent to the computer, the scan code, tells it only which physical key (or keys) was pressed or released.

View the full Wikipedia page for Computer keyboard
↑ Return to Menu

Paper tape in the context of RCA Mark II

The RCA Mark II Sound Synthesizer (nicknamed Victor) was the first programmable electronic synthesizer and the flagship piece of equipment at the Columbia-Princeton Electronic Music Center. Designed by Herbert Belar and Harry Olson at RCA, with contributions by Vladimir Ussachevsky and Peter Mauzey, it was installed at Columbia University in 1957. Consisting of a room-sized array of interconnected sound synthesis components, the Mark II gave the user more flexibility and had twice the number of tone oscillators as its predecessor, the Mark I. The synthesizer was funded by a large grant from the Rockefeller Foundation.

Earlier 20th century electronic instruments such as the Telharmonium or the theremin were manually operated. The RCA combined diverse electronic sound generation with a music sequencer, which proved a huge attraction to composers of the day, who were growing weary of creating electronic works by splicing together individual sounds recorded on sections of magnetic tape. The RCA Mark II featured a binary sequencer using a paper tape reader analogous to a player piano, that would send instructions to the synthesizer, automating playback from the device. The synthesizer would then output sound to a synchronized record lathe next to the machine. The resulting recording would then be compared against the punch-tape score, and the process would be repeated until the desired results were obtained.

View the full Wikipedia page for RCA Mark II
↑ Return to Menu

Paper tape in the context of Gilbert Vernam

Gilbert Sandford Vernam (April 3, 1890 – February 7, 1960) was a Worcester Polytechnic Institute 1914 graduate and AT&T Bell Labs engineer who, in 1917, invented an additive polyalphabetic stream cipher and later co-invented an automated one-time pad cipher. Vernam proposed a teleprinter cipher in which a previously prepared key, kept on paper tape, is combined character by character with the plaintext message to produce the ciphertext. To decipher the ciphertext, the same key would be again combined character by character, producing the plaintext. Vernam later worked for the Postal Telegraph Company, and became an employee of Western Union when that company acquired Postal in 1943. His later work was largely with automatic switching systems for telegraph networks.

View the full Wikipedia page for Gilbert Vernam
↑ Return to Menu

Paper tape in the context of Automatic programming

In computer science, automatic programming is a type of computer programming in which some mechanism generates a computer program, to allow human programmers to write the code at a higher abstraction level.

There has been little agreement on the precise definition of automatic programming, mostly because its meaning has changed over time. David Parnas, tracing the history of "automatic programming" in published research, noted that in the 1940s it described automation of the manual process of punching paper tape. Later it referred to translation of high-level programming languages like Fortran and ALGOL. In fact, one of the earliest programs identifiable as a compiler was called Autocode. Parnas concluded that "automatic programming has always been a euphemism for programming in a higher-level language than was then available to the programmer."

View the full Wikipedia page for Automatic programming
↑ Return to Menu