P-code machine in the context of BCPL


P-code machine in the context of BCPL

P-code machine Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about P-code machine in the context of "BCPL"


⭐ Core Definition: P-code machine

In computer programming, a P-code machine (portable code machine) is a virtual machine designed to execute P-code, the assembly language or machine code of a hypothetical central processing unit (CPU). The term P-code machine is applied generically to all such machines (such as the Java virtual machine (JVM) and MATLAB pre-compiled code), as well as specific implementations using those machines. One of the most notable uses of P-Code machines is the P-Machine of the Pascal-P system. The developers of the UCSD Pascal implementation within this system construed the P in P-code to mean pseudo more often than portable; they adopted a unique label for pseudo-code meaning instructions for a pseudo-machine.

Although the concept was first implemented circa 1966 as O-code for the Basic Combined Programming Language (BCPL) and P code for the language Euler, the term P-code first appeared in the early 1970s. Two early compilers generating P-code were the Pascal-P compiler in 1973, by Kesav V. Nori, Urs Ammann, Kathleen Jensen, Hans-Heinrich Nägeli, and Christian Jacobi, and the Pascal-S compiler in 1975, by Niklaus Wirth.

↓ Menu
HINT:

In this Dossier

P-code machine in the context of Bytecode

Bytecode (also called portable code or p-code) is an intermediate representation form of instruction set designed for efficient execution by a software interpreter. Unlike human-readable source code, bytecodes are compact numeric codes, constants, and references (normally numeric addresses) that encode the result of compiler parsing and performing semantic analysis of things like type, scope, and nesting depths of program objects.

The name bytecode stems from instruction sets that have one-byte opcodes followed by optional parameters. Intermediate representations such as bytecode may be output by programming language implementations to ease interpretation, or it may be used to reduce hardware and operating system dependence by allowing the same code to run cross-platform, on different devices. Bytecode may often be either directly executed on a virtual machine (a p-code machine, i.e., interpreter), or it may be further compiled into machine code for better performance.

View the full Wikipedia page for Bytecode
↑ Return to Menu

P-code machine in the context of Native code

In computing, machine code is data encoded and structured to control a computer's central processing unit (CPU) via its programmable interface. A computer program consists primarily of sequences of machine-code instructions. Machine code is classified as native with respect to its host CPU since it is the language that the CPU interprets directly. Some software interpreters translate the programming language that they interpret into a virtual machine code (bytecode) and process it with a P-code machine.

A machine-code instruction causes the CPU to perform a specific task such as:

View the full Wikipedia page for Native code
↑ Return to Menu