Osteoblast in the context of "Bones"

Play Trivia Questions online!

or

Skip to study material about Osteoblast in the context of "Bones"

Ad spacer

⭐ Core Definition: Osteoblast

Osteoblasts (from the Greek combining forms for "bone", ὀστέο-, osteo- and βλαστάνω, blastanō "germinate") are cells with a single nucleus that synthesize bone. However, in the process of bone formation, osteoblasts function in groups of connected cells. Individual cells cannot make bone. A group of organized osteoblasts together with the bone made by a unit of cells is usually called the osteon.

Osteoblasts are specialized, terminally differentiated products of mesenchymal stem cells. They synthesize dense, crosslinked collagen and specialized proteins in much smaller quantities, including osteocalcin and osteopontin, which compose the organic matrix of bone.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Osteoblast in the context of Bone

A bone is a rigid organ that constitutes part of the skeleton in most vertebrate animals. Bones protect the organs of the body, produce red and white blood cells, store minerals, help regulate acid-base homeostasis, provide structure and support for the body, and enable mobility and hearing. Bones come in a variety of shapes and sizes and have complex internal and external structures.

Bone tissue (also known as osseous tissue or bone in the uncountable) is a form of hard tissue, specialised connective tissue that is mineralized and has an intercellular honeycomb-like matrix, which helps to give the bone rigidity. Bone tissue is made up of different types of bone cells: osteoblasts and osteocytes (bone formation and mineralisation); osteoclasts (bone resorption); modified or flattened osteoblasts (lining cells that form a protective layer on the bone surface). The mineralised matrix of bone tissue has an organic component of mainly ossein, a form of collagen, and an inorganic component of bone mineral, made up of various salts. Bone tissue comprises cortical bone and cancellous bone, although bones may also contain other kinds of tissue including bone marrow, endosteum, periosteum, nerves, blood vessels, and cartilage.

↑ Return to Menu

Osteoblast in the context of Dermal bone

A dermal bone or investing bone or membrane bone is a bony structure derived from intramembranous ossification forming components of the vertebrate skeleton, including much of the skull, jaws, gill covers, shoulder girdle, fin rays (lepidotrichia), and the shells of turtles and armadillos. In contrast to endochondral bone, dermal bone does not have a cartilage precursor, and it is often ornamented. Dermal bone is formed within the dermis and grows by accretion only – the outer portion of the bone is deposited by osteoblasts.

The function of some dermal bone is conserved throughout vertebrates, although there is variation in shape and in the number of bones in the skull roof and postcranial structures. In bony fish, dermal bone is found in the fin rays and scales. A special example of dermal bone is the clavicle. Some of the dermal bone functions regard biomechanical aspects such as protection against predators. The dermal bones are also argued to be involved in ecophysiological implications such as the heat transfers between the body and the surrounding environment when basking (seen in crocodilians) as well as in bone respiratory acidosis buffering during prolonged apnea (seen in both crocodilians and turtles). These ecophysiological functions rely on the set-up of a blood vessel network within and straight above the dermal bones.

↑ Return to Menu

Osteoblast in the context of Ossification

Ossification (also called osteogenesis or bone mineralization) in bone remodeling is the process of laying down new bone material by cells named osteoblasts. It is synonymous with bone tissue formation. There are two processes resulting in the formation of normal, healthy bone tissue: Intramembranous ossification is the direct laying down of bone into the primitive connective tissue (mesenchyme), while endochondral ossification involves cartilage as a precursor.

In fracture healing, endochondral osteogenesis is the most commonly occurring process, for example in fractures of long bones treated by plaster of Paris, whereas fractures treated by open reduction and internal fixation with metal plates, screws, pins, rods and nails may heal by intramembranous osteogenesis.

↑ Return to Menu

Osteoblast in the context of Chondrocyte

Chondrocytes (/ˈkɒndrəst, -dr-/, from Greek χόνδρος (chondros) 'cartilage' and κύτος (kytos) 'cell') are the only cells found in healthy cartilage. They produce and maintain the cartilaginous matrix, which consists mainly of collagen and proteoglycans. Although the word chondroblast is commonly used to describe an immature chondrocyte, the term is imprecise, since the progenitor of chondrocytes (which are mesenchymal stem cells) can differentiate into various cell types, including osteoblasts.

↑ Return to Menu

Osteoblast in the context of Metaphysis

The metaphysis (pl.: metaphyses) is the neck portion of a long bone between the epiphysis and the diaphysis. It contains the growth plate, the part of the bone that grows during childhood, and as it grows it ossifies near the diaphysis and the epiphyses. The metaphysis contains a diverse population of cells including mesenchymal stem cells, which give rise to bone and fat cells, as well as hematopoietic stem cells which give rise to a variety of blood cells as well as bone-destroying cells called osteoclasts. Thus the metaphysis contains a highly metabolic set of tissues including trabecular (spongy) bone, blood vessels, as well as marrow adipose tissue (MAT).

The metaphysis may be divided anatomically into three components based on tissue content: a cartilaginous component (epiphyseal plate), a bony component (metaphysis) and a fibrous component surrounding the periphery of the plate. The growth plate synchronizes chondrogenesis with osteogenesis or interstitial cartilage growth with both appositional bone elongation in conjunction with growth in width, so bearing load and responding to local and systemic forces and factors balance one another mechanically.

↑ Return to Menu

Osteoblast in the context of Magnolol

Magnolol is an organic compound that is classified as lignan. It is a bioactive compound found in the bark of the Houpu magnolia (Magnolia officinalis) and in M. grandiflora.

Magnolol is a compound that acts on GABA_A receptors and functions as an allosteric modulator. It has antifungal properties and demonstrates anti-periodontal disease effects in animal models. In cell cultures, magnolol stimulates osteoblasts and inhibits osteoclasts, indicating potential for anti-osteoporosis treatment. It also binds in a dimeric form to PPARγ, acting as an agonist of this nuclear receptor. Additionally, magnolol may interact with cannabinoid receptors, acting as a partial agonist of CB2 receptors with lower affinity for CB1 receptors.

↑ Return to Menu