Origin of the Moon in the context of "Lunar science"

Play Trivia Questions online!

or

Skip to study material about Origin of the Moon in the context of "Lunar science"

Ad spacer

⭐ Core Definition: Origin of the Moon

The origin of the Moon is usually explained by a Mars-sized body, known as Theia, striking the Earth, creating a debris ring that eventually collected into a single natural satellite, the Moon, but there are a number of variations on this giant-impact hypothesis, as well as alternative explanations, and research continues into how the Moon came to be formed. Other proposed scenarios include captured body, fission, formed together (accretion, synestia), planetesimal collisions (formed from asteroid-like bodies), and collision theories.

The standard giant-impact hypothesis suggests that a Mars-sized body called Theia impacted the proto-Earth, creating a large debris ring around Earth, which then accreted to form the Moon. This collision also resulted in the 23.5° tilted axis of the Earth, thus causing the seasons. The Moon's oxygen isotopic ratios seem to be essentially identical to Earth's. Oxygen isotopic ratios, which may be measured very precisely, yield a unique and distinct signature for each Solar System body. If Theia had been a separate protoplanet, it probably would have had a different oxygen isotopic signature than proto-Earth, as would the ejected mixed material. Also, the Moon's titanium isotope ratio (Ti/Ti) appears so close to the Earth's (within 4 parts per million) that little if any of the colliding body's mass could have been part of the Moon.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Origin of the Moon in the context of Moon

The Moon is the only natural satellite of Earth. It orbits around Earth at an average distance of 384,399 kilometres (238,854 mi), a distance roughly 30 times the width of Earth. It completes an orbit (lunar month) in relation to Earth and the Sun (synodically) every 29.5 days. The Moon and Earth are bound by gravitational attraction, which is stronger on their facing sides. The resulting tidal forces are the main driver of Earth's tides, and have pulled the Moon to always face Earth with the same near side. This tidal locking effectively synchronizes the Moon's rotation period (lunar day) to its orbital period (lunar month).

In geophysical terms, the Moon is a planetary-mass object or satellite planet. Its mass is 1.2% that of the Earth, and its diameter is 3,474 km (2,159 mi), roughly one-quarter of Earth's (about as wide as the contiguous United States). Within the Solar System, it is larger and more massive than any known dwarf planet, and the fifth-largest and fifth-most massive moon, as well as the largest and most massive in relation to its parent planet. Its surface gravity is about one-sixth of Earth's, about half that of Mars, and the second-highest among all moons in the Solar System after Jupiter's moon Io. The body of the Moon is differentiated and terrestrial, with only a minuscule hydrosphere, atmosphere, and magnetic field. The lunar surface is covered in regolith dust, which mainly consists of the fine material ejected from the lunar crust by impact events. The lunar crust is marked by impact craters, with some younger ones featuring bright ray-like streaks. The Moon was volcanically active until 1.2 billion years ago, surfacing lava mostly on the thinner near side of the Moon, filling ancient craters, which through cooling formed the today prominently visible dark plains of basalt called maria ('seas'). The Moon formed out of material from Earth, ejected by a giant impact into Earth of a hypothesized Mars-sized body named Theia 4.51 billion years ago, not long after Earth's formation.

↑ Return to Menu

Origin of the Moon in the context of Giant-impact hypothesis

The giant-impact hypothesis, sometimes called the Theia Impact, is an astrogeology hypothesis for the formation of the Moon first proposed in 1946 by Canadian geologist Reginald Daly. The hypothesis suggests that the Proto-Earth collided with a Mars-sized co-orbital protoplanet likely from the L4 or L5 Lagrange points of the Earth's orbit approximately 4.5 billion years ago in the early Hadean eon (about 20 to 100 million years after the Solar System formed), and some of the ejected debris from the impact event later re-accreted to form the Moon. The impactor planet is sometimes called Theia, named after the mythical Greek Titan who was the mother of Selene, the goddess of the Moon.

Analysis of lunar rocks published in a 2016 report suggests that the impact might have been a direct hit, causing a fragmentation and thorough mixing of both parent bodies.

↑ Return to Menu

Origin of the Moon in the context of Earth-Moon system

The Moon is the only natural satellite of Earth. It orbits around Earth at an average distance of 384,399 kilometres (238,854 mi), a distance roughly 30 times the width of Earth. It completes an orbit (lunar month) in relation to Earth and the Sun (synodically) every 29.5 days. The Moon and Earth are bound by gravitational attraction, which is stronger on the sides facing each other. The resulting tidal forces are the main driver of Earth's tides, and have pulled the Moon to always face Earth with the same near side. This tidal locking effectively synchronizes the Moon's rotation period (lunar day) to its orbital period (lunar month).

In geophysical terms, the Moon is a planetary-mass object or satellite planet. Its mass is 1.2% that of the Earth, and its diameter is 3,474 km (2,159 mi), roughly one-quarter of Earth's (about as wide as the contiguous United States). Within the Solar System, it is larger and more massive than any known dwarf planet, and the fifth-largest and fifth-most massive moon, as well as the largest and most massive in relation to its parent planet. Its surface gravity is about one-sixth of Earth's, about half that of Mars, and the second-highest among all moons in the Solar System after Jupiter's moon Io. The body of the Moon is differentiated and terrestrial, with only a minuscule hydrosphere, atmosphere, and magnetic field. The lunar surface is covered in regolith dust, which mainly consists of the fine material ejected from the lunar crust by impact events. The lunar crust is marked by impact craters, with some younger ones featuring bright ray-like streaks. The Moon was volcanically active until 1.2 billion years ago, surfacing lava mostly on the thinner near side of the Moon, filling ancient craters, which through cooling formed the today prominently visible dark plains of basalt called maria ('seas'). The origin of the Moon is not clear, although it has been hypothesized to have formed out of material from Earth, ejected by a giant impact into Earth of a Mars-sized body named Theia 4.51 billion years ago, not long after Earth's formation.

↑ Return to Menu

Origin of the Moon in the context of Lunar magma ocean

The Lunar Magma Ocean (LMO) is the layer of molten rock that is theorized to have been present on the surface of the Moon. The LMO was likely present on the Moon from the time of the Moon's formation (about 4.5 or 4.4 billion years ago) to tens or hundreds of millions of years after that time. The LMO was a thermodynamic consequence of the Moon's relatively rapid formation in the aftermath of a giant impact between the proto-Earth and another planetary body. As the Moon accreted from the debris from the giant impact, gravitational potential energy was converted to thermal energy. Due to the rapid accretion of the Moon (in about a month to a year), thermal energy was trapped since it did not have sufficient time to thermally radiate away energy through the lunar surface. The subsequent thermochemical evolution of the LMO explains the Moon's largely anorthositic crust, europium anomaly, and KREEP material.

The LMO was initially proposed by two groups in 1970 after they analyzed anorthositic rock fragments found in the Apollo 11 sample collection. Wood et al. used fragments of bulk sample 10085 for their analyses. Ferroan anorthosite (FAN) rocks found during the Apollo program are composed primarily (over 90%) of the mineral plagioclase. More specifically, FAN rocks found on the Moon consist of the calcium (Ca) end-member of plagioclase (i.e., anorthite). This suggests that at least upper layers of the Moon were molten in the past due to the purity of lunar anorthosites and the fact that anorthite generally has a high crystallization temperature.

↑ Return to Menu