Origin of birds in the context of "Avialan"

Play Trivia Questions online!

or

Skip to study material about Origin of birds in the context of "Avialan"

Ad spacer

⭐ Core Definition: Origin of birds

The scientific question of which larger group of animals birds evolved within has traditionally been called the "origin of birds". The present scientific consensus is that birds are a group of maniraptoran theropod dinosaurs that originated during the Mesozoic era.

A close relationship between birds and dinosaurs was first proposed in the nineteenth century after the discovery of the primitive bird Archaeopteryx in Germany. Birds and extinct non-avian dinosaurs share many unique skeletal traits. Moreover, fossils of more than thirty species of non-avian dinosaur with preserved feathers have been collected. There are even very small dinosaurs, such as Microraptor and Anchiornis, which have long, vaned arm and leg feathers forming wings. The Jurassic basal avialan Pedopenna also shows these long foot feathers. Paleontologist Lawrence Witmer concluded in 2009 that this evidence is sufficient to demonstrate that avian evolution went through a four-winged stage. Fossil evidence also demonstrates that birds and dinosaurs shared features such as hollow, pneumatized bones, gastroliths in the digestive system, nest-building, and brooding behaviors.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Origin of birds in the context of Common ostrich

The common ostrich (Struthio camelus), or simply ostrich, is a species of flightless bird native to certain areas of Africa. It is one of two extant species of ostriches, the only living members of the genus Struthio in the ratite group of birds. The other is the Somali ostrich (Struthio molybdophanes), which has been recognized as a distinct species by BirdLife International since 2014, having been previously considered a distinctive subspecies of ostrich.

The common ostrich belongs to the order Struthioniformes. Struthioniformes previously contained all the ratites, such as the kiwis, emus, rheas, and cassowaries. However, recent genetic analysis has found that the group is not monophyletic, as it is paraphyletic with respect to the tinamous, so the ostriches are now classified as the only members of the order. Phylogenetic studies have shown that it is the sister group to all other members of Palaeognathae, and thus the flighted tinamous are the sister group to the extinct moa. It is distinctive in its appearance, with a long neck and legs, and can run for a long time at a speed of 55 km/h (34 mph) with short bursts up to about 70 km/h (43 mph), the fastest land speed of any bipedal animal. The common ostrich is the largest living species of bird and thus the largest living dinosaur. It lays the largest eggs of any living bird (the extinct giant elephant bird (Aepyornis maximus) of Madagascar and the south island giant moa (Dinornis robustus) of New Zealand laid larger eggs).

↑ Return to Menu

Origin of birds in the context of Samuel Wendell Williston

Samuel Wendell Williston (July 10, 1852 – August 30, 1918) was an American educator, entomologist, and paleontologist who was the first to propose that birds developed flight cursorially (by running), rather than arboreally (by leaping from tree to tree). He was a specialist on the flies, Diptera.

He is remembered for Williston's law, which states that parts in an organism, such as arthropod limbs, become reduced in number and specialized in function through evolutionary history.

↑ Return to Menu

Origin of birds in the context of Maniraptora

Maniraptora is a clade of coelurosaurian dinosaurs which includes birds and the non-avian dinosaurs that were more closely related to them than to Ornithomimus velox. It contains the major subgroups Avialae, Dromaeosauridae, Troodontidae, Oviraptorosauria, and Therizinosauria. Ornitholestes and the Alvarezsauroidea are also often included. Together with the next closest sister group, the Ornithomimosauria, Maniraptora comprises the more inclusive clade Maniraptoriformes. Maniraptorans first appear in the fossil record during the Jurassic Period (see Eshanosaurus), and survive today as living birds.

↑ Return to Menu

Origin of birds in the context of Transitional fossil

A transitional fossil is any fossilized remains of a life form that exhibits traits common to both an ancestral group and its derived descendant group. This is especially important where the descendant group is sharply differentiated by gross anatomy and mode of living from the ancestral group. These fossils serve as a reminder that taxonomic divisions are human constructs that have been imposed in hindsight on a continuum of variation. Because of the incompleteness of the fossil record, there is usually no way to know exactly how close a transitional fossil is to the point of divergence. Therefore, it cannot be assumed that transitional fossils are direct ancestors of more recent groups, though they are frequently used as models for such ancestors.

In 1859, when Charles Darwin's On the Origin of Species was first published, the fossil record was poorly known. Darwin described the perceived lack of transitional fossils as "the most obvious and gravest objection which can be urged against my theory," but he explained it by relating it to the extreme imperfection of the geological record. He noted the limited collections available at the time but described the available information as showing patterns that followed from his theory of descent with modification through natural selection. Indeed, Archaeopteryx was discovered just two years later, in 1861, and represents a classic transitional form between earlier, non-avian dinosaurs and birds. Many more transitional fossils have been discovered since then, and there is now abundant evidence of how all classes of vertebrates are related, including many transitional fossils. Specific examples of class-level transitions are: tetrapods and fish, birds and dinosaurs, and the evolution of mammals from "mammal-like reptiles".

↑ Return to Menu

Origin of birds in the context of Glossary of bird terms

The following is a glossary of common English language terms used in the description of birds—warm-blooded vertebrates of the class Aves and the only living dinosaurs. Birds, who have feathers and the ability to fly (except for the approximately 60 extant species of flightless birds), are toothless, have beaked jaws, lay hard-shelled eggs, and have a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton.

Among other details such as size, proportions and shape, terms defining bird features developed and are used to describe features unique to the class—especially evolutionary adaptations that developed to aid flight. There are, for example, numerous terms describing the complex structural makeup of feathers (e.g., barbules, rachides and vanes); types of feathers (e.g., filoplume, pennaceous and plumulaceous feathers); and their growth and loss (e.g., colour morph, nuptial plumage and pterylosis).

↑ Return to Menu

Origin of birds in the context of Philip J. Currie

Philip John Currie AOE FRSC FRCGS (born March 13, 1949) is a Canadian palaeontologist and museum curator who helped found the Royal Tyrrell Museum of Palaeontology in Drumheller, Alberta and is now a professor at the University of Alberta in Edmonton. In the 1980s, he became the director of the Canada-China Dinosaur Project, the first cooperative palaeontological partnering between China and the West since the Central Asiatic Expeditions in the 1920s, and helped describe some of the first feathered dinosaurs. He is one of the primary editors of the influential Encyclopedia of Dinosaurs, and his areas of expertise include theropods (especially Tyrannosauridae), the origin of birds, and dinosaurian migration patterns and herding behavior. He was one of the models for palaeontologist Alan Grant in the film Jurassic Park.

↑ Return to Menu

Origin of birds in the context of Oviraptorosauria

Oviraptorosaurs ("egg thief lizards") are a group of feathered maniraptoran dinosaurs from the Cretaceous Period of what are now Asia and North America. They are distinct for their characteristically short, beaked, parrot-like skulls, with or without bony crests atop the head. They ranged in size from Caudipteryx, which was the size of a turkey, to the 8-meter-long, 1.4-ton Gigantoraptor. The group (along with all maniraptoran dinosaurs) is close to the ancestry of birds. Some researchers such as Maryanska et al (2002) and Osmólska et al. (2004) have proposed that they may represent primitive flightless birds. The most complete oviraptorosaur specimens have been found in Asia. The North American oviraptorosaur record is sparse.

The earliest and most basal ("primitive") known oviraptorosaurs are Ningyuansaurus wangi, Protarchaeopteryx robusta and Incisivosaurus gauthieri, both from the lower Yixian Formation of China, dating to about 125 million years ago during the Aptian age of the early Cretaceous period. A tiny neck vertebra reported from the Wadhurst Clay Formation of England shares some features in common with oviraptorosaurs, and may represent an earlier occurrence of this group (at about 140 million years ago).

↑ Return to Menu