Order theory in the context of Homogeneous binary relation


Order theory in the context of Homogeneous binary relation

Order theory Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Order theory in the context of "Homogeneous binary relation"


⭐ Core Definition: Order theory

Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that".

↓ Menu
HINT:

In this Dossier

Order theory in the context of Lattice (order)

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These lattice-like structures all admit order-theoretic as well as algebraic descriptions.

View the full Wikipedia page for Lattice (order)
↑ Return to Menu

Order theory in the context of Sequence

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

For example, (M, A, R, Y) is a sequence of letters with the letter "M" first and "Y" last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be finite, as in these examples, or infinite, such as the sequence of all even positive integers (2, 4, 6, ...).

View the full Wikipedia page for Sequence
↑ Return to Menu

Order theory in the context of Mathematical structure

In mathematics, a structure on a set (or on some sets) refers to providing or endowing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.

A partial list of possible structures is measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, graphs, events, differential structures, categories, setoids, and equivalence relations.

View the full Wikipedia page for Mathematical structure
↑ Return to Menu

Order theory in the context of Hasse diagram

In order theory, a Hasse diagram (/ˈhæsə/; German: [ˈhasə]) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction. Concretely, for a partially ordered set one represents each element of as a vertex in the plane and draws a line segment or curve that goes upward from one vertex to another vertex whenever covers (that is, whenever , and there is no distinct from and with ). These curves may cross each other but must not touch any vertices other than their endpoints. Such a diagram, with labeled vertices, uniquely determines its partial order.

Hasse diagrams are named after Helmut Hasse (1898–1979); according to Garrett Birkhoff, they are so called because of the effective use Hasse made of them. However, Hasse was not the first to use these diagrams. One example that predates Hasse can be found in an 1895 work by Henri Gustave Vogt. Although Hasse diagrams were originally devised as a technique for making drawings of partially ordered sets by hand, they have more recently been created automatically using graph drawing techniques.

View the full Wikipedia page for Hasse diagram
↑ Return to Menu

Order theory in the context of Serial relation

In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation.

Bertrand Russell used serial relations in The Principles of Mathematics (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity.

View the full Wikipedia page for Serial relation
↑ Return to Menu

Order theory in the context of Poset

In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word partial is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable.

Formally, a partial order is a homogeneous binary relation that is reflexive, antisymmetric, and transitive. A partially ordered set (poset for short) is an ordered pair consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set itself is sometimes called a poset.

View the full Wikipedia page for Poset
↑ Return to Menu

Order theory in the context of Magnitude (mathematics)

In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the class of objects to which it belongs. Magnitude as a concept dates to Ancient Greece and has been applied as a measure of distance from one object to another. For numbers, the absolute value of a number is commonly applied as the measure of units between a number and zero.

In vector spaces, the Euclidean norm is a measure of magnitude used to define a distance between two points in space. In physics, magnitude can be defined as quantity or distance. An order of magnitude is typically defined as a unit of distance between one number and another's numerical places on the decimal scale.

View the full Wikipedia page for Magnitude (mathematics)
↑ Return to Menu

Order theory in the context of List (computer science)

In computer science, a list or sequence is a collection of items that are finite in number and in a particular order. An instance of a list is a computer representation of the mathematical concept of a tuple or finite sequence.

A list may contain the same value more than once, and each occurrence is considered a distinct item.

View the full Wikipedia page for List (computer science)
↑ Return to Menu

Order theory in the context of Hans Hahn (mathematician)

Hans Hahn (/hɑːn/; German: [haːn]; 27 September 1879 – 24 July 1934) was an Austrian mathematician and philosopher who made contributions to functional analysis, topology, set theory, the calculus of variations, real analysis, and order theory. In philosophy he was among the main logical positivists of the Vienna Circle.

View the full Wikipedia page for Hans Hahn (mathematician)
↑ Return to Menu

Order theory in the context of Supremum

The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered.

View the full Wikipedia page for Supremum
↑ Return to Menu

Order theory in the context of Join (mathematics)

In mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum (least upper bound) of denoted and similarly, the meet of is the infimum (greatest lower bound), denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion.

A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms.

View the full Wikipedia page for Join (mathematics)
↑ Return to Menu

Order theory in the context of Standings

A ranking is a relationship between a set of items, often recorded in a list, such that, for any two items, the first is either "ranked higher than", "ranked lower than", or "ranked equal to" the second. In mathematics, this is known as a weak order or total preorder of objects. It is not necessarily a total order of objects because two different objects can have the same ranking. The rankings themselves are totally ordered. For example, materials are totally preordered by hardness, while degrees of hardness are totally ordered. If two items are the same in rank it is considered a tie.

By reducing detailed measures to a sequence of ordinal numbers, rankings make it possible to evaluate complex information according to certain criteria. Thus, for example, an Internet search engine may rank the pages it finds according to an estimation of their relevance, making it possible for the user quickly to select the pages they are likely to want to see.

View the full Wikipedia page for Standings
↑ Return to Menu

Order theory in the context of Monotone function

In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory.

View the full Wikipedia page for Monotone function
↑ Return to Menu