Optical fiber in the context of Bandwidth (computing)


Optical fiber in the context of Bandwidth (computing)

Optical fiber Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Optical fiber in the context of "Bandwidth (computing)"


⭐ Core Definition: Optical fiber

An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss and are immune to electromagnetic interference. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, such as fiber optic sensors and fiber lasers.

Glass optical fibers are typically made by drawing, while plastic fibers can be made either by drawing or by extrusion. Optical fibers typically include a core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by the phenomenon of total internal reflection which causes the fiber to act as a waveguide. Fibers that support many propagation paths or transverse modes are called multi-mode fibers, while those that support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a wider core diameter and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 1,050 meters (3,440 ft).

↓ Menu
HINT:

In this Dossier

Optical fiber in the context of Broadband

In telecommunications, broadband or high speed is the wide-bandwidth data transmission that uses signals at a wide spread of frequencies or several different simultaneous frequencies. It is used in fast Internet access where the transmission medium can be coaxial cable, optical fiber, wireless Internet (radio), twisted pair cable, or satellite.

Originally used to mean "using a wide-spread frequency" and for services that were analog at the lowest level, in the context of Internet access, "broadband" is now often used to mean any high-speed Internet access that is seemingly always "on" and is faster than dial-up access over traditional analog or ISDN PSTN services.

View the full Wikipedia page for Broadband
↑ Return to Menu

Optical fiber in the context of Aesthetics (textile)

Aesthetics in textiles is one of the basic concepts of the serviceability of textiles. It is determined by the perception of touch and sight. Aesthetics imply the appearance and attraction of textile products; it includes the color and texture of the material. It is a statement about the end user (consumer) and the target market. When combined with fabric construction, the finish of the clothing material, garment fit, style, and fashion compatibility, colours create an aesthetic comfort. All of these elements work together to satisfy our visual perception. Aesthetics incorporates the role of evaluation (analysing and judging) also.

There are various arts and applications that imparts aesthetic properties in textiles. Additionally, the use of LEDs and optical fibres enables the creation of aesthetic properties such as illuminated textiles.

View the full Wikipedia page for Aesthetics (textile)
↑ Return to Menu

Optical fiber in the context of Dispersion (optics)

Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.

Although the term is used in the field of optics to describe light and other electromagnetic waves, dispersion in the same sense can apply to any sort of wave motion such as acoustic dispersion in the case of sound and seismic waves, and in gravity waves (ocean waves). Within optics, dispersion is a property of telecommunication signals along transmission lines (such as microwaves in coaxial cable) or the pulses of light in optical fiber.

View the full Wikipedia page for Dispersion (optics)
↑ Return to Menu

Optical fiber in the context of Transmission medium

A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate sound, and a transmission medium for sounds may be air, but solids and liquids may also act as the transmission medium. Vacuum or air constitutes a good transmission medium for electromagnetic waves such as light and radio waves. While a material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission medium they pass through, for instance, by absorption or reflection or refraction at the interfaces between media. Technical devices can therefore be employed to transmit or guide waves. Thus, an optical fiber or a copper cable is used as transmission media.

Electromagnetic radiation can be transmitted through an optical medium, such as optical fiber, or through twisted pair wires, coaxial cable, or dielectric-slab waveguides. It may also pass through any physical material that is transparent to the specific wavelength, such as water, air, glass, or concrete. Sound is, by definition, the vibration of matter, so it requires a physical medium for transmission, as do other kinds of mechanical waves and heat energy. Historically, science incorporated various aether theories to explain the transmission medium. However, it is now known that electromagnetic waves do not require a physical transmission medium, and so can travel through the vacuum of free space. Regions of the insulative vacuum can become conductive for electrical conduction through the presence of free electrons, holes, or ions.

View the full Wikipedia page for Transmission medium
↑ Return to Menu

Optical fiber in the context of Interferometry

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy (and its applications to chemistry), quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

Interferometers are devices that extract information from interference. They are widely used in science and industry for the measurement of microscopic displacements, refractive index changes and surface irregularities. In the case with most interferometers, light from a single source is split into two beams that travel in different optical paths, which are then combined again to produce interference; two incoherent sources can also be made to interfere under some circumstances. The resulting interference fringes give information about the difference in optical path lengths. In analytical science, interferometers are used to measure lengths and the shape of optical components with nanometer precision; they are the highest-precision length measuring instruments in existence. In Fourier transform spectroscopy they are used to analyze light containing features of absorption or emission associated with a substance or mixture. An astronomical interferometer consists of two or more separate telescopes that combine their signals, offering a resolution equivalent to that of a telescope of diameter equal to the largest separation between its individual elements.

View the full Wikipedia page for Interferometry
↑ Return to Menu

Optical fiber in the context of Telecommunications cable

Telecommunications cable is a type of guided transmission medium. Telecommunications are based on transmitting and receiving modulated waves/signals through a medium. Types of telecommunications cable include: electrical cables when electric current is carried; transmission lines and waveguides when electromagnetic waves are transmitted; optical fibers when light signals are transmitted.

When the distances involved are very short, the term signal cable may be used, for analog or digital communication. A data cable is used in digital data communications. Data cabling must conform to certain standards and best practices to ensure reliable performance and safety. When the distance between the transmitter and receiver is very far, an unguided or wireless medium transmission may be used, based on antennas.

View the full Wikipedia page for Telecommunications cable
↑ Return to Menu

Optical fiber in the context of Fiber-optic cable

A fiber-optic cable, also known as an optical-fiber cable, is an assembly similar to an electrical cable but containing one or more optical fibers that are used to carry light. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable is used. Different types of cable are used for fiber-optic communication in different applications, for example long-distance telecommunication or providing a high-speed data connection between different parts of a building.

View the full Wikipedia page for Fiber-optic cable
↑ Return to Menu

Optical fiber in the context of Wireless

Wireless communication (or just wireless, when the context allows) is the transfer of information (telecommunication) between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth, or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mice, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications involve other electromagnetic phenomena, such as light and magnetic or electric fields, or the use of sound.

The term wireless has been used twice in communications history, with slightly different meanings. It was initially used from about 1890 for the first radio transmitting and receiving technology, as in wireless telegraphy, until the new word radio replaced it around 1920. Radio sets in the UK and the English-speaking world that were not portable continued to be referred to as wireless sets into the 1960s. The term wireless was revived in the 1980s and 1990s mainly to distinguish digital devices that communicate without wires, such as the examples listed in the previous paragraph, from those that require wires or cables. This became its primary usage in the 2000s, due to the advent of technologies such as mobile broadband, Wi-Fi, and Bluetooth.

View the full Wikipedia page for Wireless
↑ Return to Menu

Optical fiber in the context of Fixed-line

A landline, or fixed line, is telephone service provided to a subscriber via cable or wire, i.e. metal conductors or optical fiber. The term differentiates a telephone service from the now ubiquitous wireless service. A landline allows multiple telephones sets to be connected simultaneously to the same line, and is loosely described as plain old telephone service (POTS).

Landline services are traditionally provided via the outside plant of a telephone company, consisting of analogue copper wire originating from a telephone company's central office, or wirencenter. Landline service often includes services that use Internet Protocol via broadband services.

View the full Wikipedia page for Fixed-line
↑ Return to Menu

Optical fiber in the context of Radio network

There are two types of radio network currently in use around the world: the one-to-many (simplex communication) broadcast network commonly used for public information and mass-media entertainment, and the two-way radio (duplex communication) type used more commonly for public safety and public services such as police, fire, taxicabs, and delivery services. Cell phones are able to send and receive simultaneously by using two different frequencies at the same time. Many of the same components and much of the same basic technology applies to all three.

The two-way type of radio network shares many of the same technologies and components as the broadcast-type radio network but is generally set up with fixed broadcast points (transmitters) with co-located receivers and mobile receivers/transmitters or transceivers. In this way both the fixed and mobile radio units can communicate with each other over broad geographic regions ranging in size from small single cities to entire states/provinces or countries. There are many ways in which multiple fixed transmit/receive sites can be interconnected to achieve the range of coverage required by the jurisdiction or authority implementing the system: conventional wireless links in numerous frequency bands, fibre-optic links, or microwave links. In all of these cases the signals are typically backhauled to a central switch of some type where the radio message is processed and resent (repeated) to all transmitter sites where it is required to be heard.

View the full Wikipedia page for Radio network
↑ Return to Menu

Optical fiber in the context of Optomechanics

Optomechanics is the manufacture and maintenance of optical parts and devices. This includes the design and manufacture of hardware used to hold and align elements in optical systems, such as:

Optomechanics also covers the methods used to design and package compact and rugged optical trains, and the manufacture and maintenance of fiber optic materials

View the full Wikipedia page for Optomechanics
↑ Return to Menu

Optical fiber in the context of Optical computing

Optical computing or photonic computing uses light waves produced by lasers or incoherent sources for data processing, data storage or data communication for computing. For decades, photons have shown promise to enable a higher bandwidth than the electrons used in conventional computers (see optical fibers).

Most research projects focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. This approach appears to offer the best short-term prospects for commercial optical computing, since optical components could be integrated into traditional computers to produce an optical-electronic hybrid. However, optoelectronic devices consume 30% of their energy converting electronic energy into photons and back; this conversion also slows the transmission of messages. All-optical computers eliminate the need for optical-electrical-optical (OEO) conversions, thus reducing electrical power consumption.

View the full Wikipedia page for Optical computing
↑ Return to Menu

Optical fiber in the context of Fiber-optic communication

Fiber-optic communication is a form of optical communication for transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

Optical fiber is used by many telecommunications companies to transmit telephone signals, internet communication, and cable television signals. Researchers at Bell Labs have reached a record bandwidth–distance product of over 100 petabit × kilometers per second using fiber-optic communication.

View the full Wikipedia page for Fiber-optic communication
↑ Return to Menu