Optical cavity in the context of Interferometer


Optical cavity in the context of Interferometer

Optical cavity Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Optical cavity in the context of "Interferometer"


⭐ Core Definition: Optical cavity

An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that confines light waves similarly to how a cavity resonator confines microwaves. Optical cavities are a major component of lasers, surrounding the gain medium and providing feedback of the laser light. They are also used in optical parametric oscillators and some interferometers. Light confined in the cavity reflects multiple times, producing modes with certain resonance frequencies. Modes can be decomposed into longitudinal modes that differ only in frequency and transverse modes that have different intensity patterns across the cross section of the beam. Many types of optical cavities produce standing wave modes.

Different resonator types are distinguished by the focal lengths of the two mirrors and the distance between them. Flat mirrors are not often used because of the difficulty of aligning them to the needed precision. The geometry (resonator type) must be chosen so that the beam remains stable, i.e. the size of the beam does not continually grow with multiple reflections. Resonator types are also designed to meet other criteria such as a minimum beam waist or having no focal point (and therefore no intense light at a single point) inside the cavity.

↓ Menu
HINT:

In this Dossier

Optical cavity in the context of Optical amplification

An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiber-optic cables which carry much of the world's telecommunication links.

There are several different physical mechanisms that can be used to amplify a light signal, which correspond to the major types of optical amplifiers. In doped fiber amplifiers and bulk lasers, stimulated emission in the amplifier's gain medium causes amplification of incoming light. In semiconductor optical amplifiers (SOAs), electronhole recombination occurs. In Raman amplifiers, Raman scattering of incoming light with phonons in the lattice of the gain medium produces photons coherent with the incoming photons. Parametric amplifiers use parametric amplification.

View the full Wikipedia page for Optical amplification
↑ Return to Menu

Optical cavity in the context of Fabry–Pérot interferometer

In optics, a Fabry–Pérot interferometer (FPI), or etalon, is an optical cavity made from two parallel reflecting surfaces (i.e.: thin mirrors). Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

Etalons are widely used in telecommunications, lasers and spectroscopy to control and measure the wavelengths of light. Recent advances in fabrication technique allow the creation of very precise tunable Fabry–Pérot interferometers. The device is technically an interferometer when the distance between the two surfaces (and with it the resonance length) can be changed, and an etalon when the distance is fixed (however, the two terms are often used interchangeably).

View the full Wikipedia page for Fabry–Pérot interferometer
↑ Return to Menu

Optical cavity in the context of Spontaneous emission

Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transitions from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount of energy in the form of a photon. If the system in question is excited by some means other than heating, the spontaneous emission is called luminescence. There are different sub-categories of luminescence depending on how excited atoms are produced (electroluminescence, chemiluminescence etc.). If the excitation is affected by the absorption of radiation the spontaneous emission is called fluorescence. Some systems have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.

Spontaneous emission cannot be explained by classical electromagnetic theory and is fundamentally a quantum process. Albert Einstein first predicted the phenomenon of spontaneous emission in a series of papers starting in 1916, culminating in what is now called the Einstein A Coefficient. Einstein's quantum theory of radiation anticipated ideas later expressed in quantum electrodynamics and quantum optics by several decades. Later, after the formal discovery of quantum mechanics in 1926, the rate of spontaneous emission was accurately described from first principles by Paul Dirac in his quantum theory of radiation, the precursor to the theory which he later called quantum electrodynamics. Contemporary physicists, when asked to give a physical explanation for spontaneous emission, generally invoke the zero-point energy of the electromagnetic field. In 1963, the Jaynes–Cummings model was developed describing the system of a two-level atom interacting with a quantized field mode (i.e. the vacuum) within an optical cavity. This model predicted that the rate of spontaneous emission could be controlled depending on the boundary conditions of the surrounding vacuum field. These experiments gave rise to cavity quantum electrodynamics (CQED), the study of effects of mirrors and cavities on radiative corrections.

View the full Wikipedia page for Spontaneous emission
↑ Return to Menu

Optical cavity in the context of Laser physics

Laser science or laser physics is a branch of optics that describes the theory and practice of lasers.

Laser science is principally concerned with quantum electronics, laser construction, optical cavity design, the physics of producing a population inversion in laser media, and the temporal evolution of the light field in the laser. It is also concerned with the physics of laser beam propagation, particularly the physics of Gaussian beams, with laser applications, and with associated fields such as nonlinear optics and quantum optics.

View the full Wikipedia page for Laser physics
↑ Return to Menu