Open set in the context of Harmonic function


Open set in the context of Harmonic function

Open set Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Open set in the context of "Harmonic function"


⭐ Core Definition: Open set

In mathematics, an open set is a generalization of an open interval in the real line.

In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point P in it, contains all points of the metric space that are sufficiently near to P (that is, all points whose distance to P is less than some value depending on P).

↓ Menu
HINT:

In this Dossier

Open set in the context of Topological space

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets.

A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds.

View the full Wikipedia page for Topological space
↑ Return to Menu

Open set in the context of Domain (mathematical analysis)

In mathematical analysis, a domain or region is a non-empty, connected, and open set in a topological space. In particular, it is any non-empty connected open subset of the real coordinate space R or the complex coordinate space C. A connected open subset of coordinate space is frequently used for the domain of a function.

The basic idea of a connected subset of a space dates from the 19th century, but precise definitions vary slightly from generation to generation, author to author, and edition to edition, as concepts developed and terms were translated between German, French, and English works. In English, some authors use the term domain, some use the term region, some use both terms interchangeably, and some define the two terms slightly differently; some avoid ambiguity by sticking with a phrase such as non-empty connected open subset.

View the full Wikipedia page for Domain (mathematical analysis)
↑ Return to Menu

Open set in the context of Neighborhood (mathematics)

In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set.

View the full Wikipedia page for Neighborhood (mathematics)
↑ Return to Menu

Open set in the context of Interior (topology)

In mathematics, specifically in topology,the interior of a subset S of a topological space X is the union of all subsets of S that are open in X.A point that is in the interior of S is an interior point of S.The interior of S is the complement of the closure of the complement of S.In this sense interior and closure are dual notions.

The exterior of a set S is the complement of the closure of S; it consists of the points that are in neither the set nor its boundary.The interior, boundary, and exterior of a subset together partition the whole space into three blocks (or fewer when one or more of these is empty).

View the full Wikipedia page for Interior (topology)
↑ Return to Menu

Open set in the context of Function of several real variables

In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex. However, the study of the complex-valued functions may be easily reduced to the study of the real-valued functions, by considering the real and imaginary parts of the complex function; therefore, unless explicitly specified, only real-valued functions will be considered in this article.

The domain of a function of n variables is the subset of for which the function is defined. As usual, the domain of a function of several real variables is supposed to contain a nonempty open subset of .

View the full Wikipedia page for Function of several real variables
↑ Return to Menu

Open set in the context of Topological property

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

A common problem in topology is to decide whether two topological spaces are homeomorphic or not. To prove that two spaces are not homeomorphic, it is sufficient to find a topological property which is not shared by them.

View the full Wikipedia page for Topological property
↑ Return to Menu

Open set in the context of Oscillation (mathematics)

In mathematics, the oscillation of a function or a sequence is a number that quantifies how much that sequence or function varies between its extreme values as it approaches infinity or a point. As is the case with limits, there are several definitions that put the intuitive concept into a form suitable for a mathematical treatment: oscillation of a sequence of real numbers, oscillation of a real-valued function at a point, and oscillation of a function on an interval (or open set).

View the full Wikipedia page for Oscillation (mathematics)
↑ Return to Menu

Open set in the context of Measurable function

In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

View the full Wikipedia page for Measurable function
↑ Return to Menu

Open set in the context of Discrete set

In mathematics, a point x is called an isolated point of a subset S (in a topological space X) if x is an element of S and there exists a neighborhood of x that does not contain any other points of S. This is equivalent to saying that the singleton {x} is an open set in the topological space S (considered as a subspace of X). Another equivalent formulation is: an element x of S is an isolated point of S if and only if it is not a limit point of S.

If the space X is a metric space, for example a Euclidean space, then an element x of S is an isolated point of S if there exists an open ball around x that contains only finitely many elements of S.A point set that is made up only of isolated points is called a discrete set or discrete point set (see also discrete space).

View the full Wikipedia page for Discrete set
↑ Return to Menu

Open set in the context of Discrete space

↑ Return to Menu

Open set in the context of Meromorphic function

Every meromorphic function on can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on : any pole must coincide with a zero of the denominator.

View the full Wikipedia page for Meromorphic function
↑ Return to Menu

Open set in the context of Closed set

In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with closed manifold.

Sets that are both open and closed are called clopen sets.

View the full Wikipedia page for Closed set
↑ Return to Menu

Open set in the context of Convex hull

In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.

Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points.The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of computational geometry. They can be solved in time for two or three dimensional point sets, and in time matching the worst-case output complexity given by the upper bound theorem in higher dimensions.

View the full Wikipedia page for Convex hull
↑ Return to Menu