Oncogene in the context of Mutated


Oncogene in the context of Mutated

Oncogene Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Oncogene in the context of "Mutated"


⭐ Core Definition: Oncogene

An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.

Most normal cells undergo a preprogrammed rapid cell death (apoptosis) if critical functions are altered and then malfunction. Activated oncogenes can cause those cells designated for apoptosis to survive and proliferate instead. Most oncogenes began as proto-oncogenes: normal genes involved in cell growth and proliferation or inhibition of apoptosis. If, through mutation, normal genes promoting cellular growth are up-regulated (gain-of-function mutation), they predispose the cell to cancer and are termed oncogenes. Usually, multiple oncogenes, along with mutated apoptotic or tumor suppressor genes, act in concert to cause cancer. Since the 1970s, dozens of oncogenes have been identified in human cancer. Many cancer drugs target the proteins encoded by oncogenes. Oncogenes are a physically and functionally diverse set of genes, and as a result, their protein products have pleiotropic effects on a variety of intricate regulatory cascades within the cell.

↓ Menu
HINT:

In this Dossier

Oncogene in the context of Gene product

A gene product is the biochemical material, either RNA or protein, resulting from the expression of a gene. A measurement of the amount of gene product is sometimes used to infer how active a gene is. Abnormal amounts of gene product can be correlated with disease-causing alleles, such as the overactivity of oncogenes, which can cause cancer.A gene is defined as "a hereditary unit of DNA that is required to produce a functional product". Regulatory elements include:

These elements work in combination with the open reading frame to create a functional product. This product may be transcribed and be functional as RNA or is translated from mRNA to a protein to be functional in the cell.

View the full Wikipedia page for Gene product
↑ Return to Menu

Oncogene in the context of Her2neu

Receptor tyrosine-protein kinase erbB-2 is a protein that normally resides in the membranes of cells and is encoded by the ERBB2 gene. ERBB is abbreviated from erythroblastic oncogene B, a gene originally isolated from the avian genome. The human protein is also frequently referred to as HER2 (human epidermal growth factor receptor 2) or CD340 (cluster of differentiation 340).

HER2 is a member of the human epidermal growth factor receptor (HER/EGFR/ERBB) family. But contrary to other members of the ERBB family, HER2 does not directly bind ligand. HER2 activation results from heterodimerization with another ERBB member or by homodimerization when HER2 concentration are high, for instance in cancer. Amplification or over-expression of this oncogene has been shown to play an important role in the development and progression of certain aggressive types of breast cancer. In recent years the protein has become an important biomarker and target of therapy for approximately 30% of breast cancer patients.

View the full Wikipedia page for Her2neu
↑ Return to Menu

Oncogene in the context of Tumor suppressor gene

A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. When a tumor suppressor gene is mutated, it results in a loss or reduction in its function. In combination with other genetic mutations, this could allow the cell to grow abnormally. The loss of function for these genes may be even more significant in the development of human cancers, compared to the activation of oncogenes.

TSGs can be grouped into the following categories: caretaker genes, gatekeeper genes, and more recently landscaper genes. Caretaker genes ensure stability of the genome via DNA repair and subsequently when mutated allow mutations to accumulate. Meanwhile, gatekeeper genes directly regulate cell growth by either inhibiting cell cycle progression or inducing apoptosis. Lastly, landscaper genes regulate growth by contributing to the surrounding environment, and when mutated, can cause an environment that promotes unregulated proliferation. The classification schemes are evolving as medical advances are being made from fields including molecular biology, genetics, and epigenetics.

View the full Wikipedia page for Tumor suppressor gene
↑ Return to Menu