Ohm's law in the context of "Drude model"

Play Trivia Questions online!

or

Skip to study material about Ohm's law in the context of "Drude model"




⭐ Core Definition: Ohm's law

Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the three mathematical equations used to describe this relationship:

↓ Menu

👉 Ohm's law in the context of Drude model

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials (especially metals). Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons (the carriers of electricity) by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.

The model, which is an application of kinetic theory, assumes that when electrons in a solid are exposed to the electric field, they behave much like a pinball machine. The sea of constantly jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions produce a net collective motion in the direction opposite to the applied electric field. This classical microscopic behaviour forms within several femtoseconds and affects optical properties of solids such as refractive index or absorption spectrum.

↓ Explore More Topics
In this Dossier

Ohm's law in the context of Electrical network

An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances, capacitances). An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Thus all circuits are networks, but not all networks are circuits (although networks without a closed loop are often referred to as open circuits).

A resistive network is a network containing only resistors and ideal current and voltage sources. Analysis of resistive networks is less complicated than analysis of networks containing capacitors and inductors. If the sources are constant (DC) sources, the result is a DC network. The effective resistance and current distribution properties of arbitrary resistor networks can be modeled in terms of their graph measures and geometrical properties.

↑ Return to Menu

Ohm's law in the context of Magnetic circuit

A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.

The relation between magnetic flux, magnetomotive force, and magnetic reluctance in an unsaturated magnetic circuit can be described by Hopkinson's law, which bears a superficial resemblance to Ohm's law in electrical circuits, resulting in a one-to-one correspondence between properties of a magnetic circuit and an analogous electric circuit. Using this concept the magnetic fields of complex devices such as transformers can be quickly solved using the methods and techniques developed for electrical circuits.

↑ Return to Menu

Ohm's law in the context of Negative resistance

In electronics, negative resistance (NR) is a property of some electrical circuits and devices in which an increase in voltage across the device's terminals results in a decrease in electric current through it.

This is in contrast to an ordinary resistor, in which an increase in applied voltage causes a proportional increase in current in accordance with Ohm's law, resulting in a positive resistance. Under certain conditions, negative resistance can increase the power of an electrical signal, amplifying it.

↑ Return to Menu