OS-level virtualization in the context of User space and kernel space


OS-level virtualization in the context of User space and kernel space

OS-level virtualization Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about OS-level virtualization in the context of "User space and kernel space"


⭐ Core Definition: OS-level virtualization

OS-level virtualization is an operating system (OS) virtualization paradigm in which the kernel allows the existence of multiple isolated user space instances, including containers (LXC, Solaris Containers, AIX WPARs, HP-UX SRP Containers, Docker, Podman, Guix), zones (Solaris Containers), virtual private servers (OpenVZ), partitions, virtual environments (VEs), virtual kernels (DragonFly BSD), and jails (FreeBSD jail and chroot). Such instances may look like real computers from the point of view of programs running in them. A computer program running on an ordinary operating system can see all resources (connected devices, files and folders, network shares, CPU power, quantifiable hardware capabilities) of that computer. Programs running inside a container can only see the container's contents and devices assigned to the container.

On Unix-like operating systems, this feature can be seen as an advanced implementation of the standard chroot mechanism, which changes the apparent root folder for the current running process and its children. In addition to isolation mechanisms, the kernel often provides resource-management features to limit the impact of one container's activities on other containers. Linux containers are all based on the virtualization, isolation, and resource management mechanisms provided by the Linux kernel, notably Linux namespaces and cgroups.

↓ Menu
HINT:

In this Dossier

OS-level virtualization in the context of Virtual machine

In computing, a virtual machine (VM) is the virtualization or emulation of a computer system. Virtual machines are based on computer architectures and provide the functionality of a physical computer. Their implementations may involve specialized hardware, software, or a combination of the two.Virtual machines differ and are organized by their function, shown here:

Some virtual machine emulators, such as QEMU and video game console emulators, are designed to also emulate (or "virtually imitate") different system architectures, thus allowing execution of software applications and operating systems written for another CPU or architecture. OS-level virtualization allows the resources of a computer to be partitioned via the kernel. The terms are not universally interchangeable.

View the full Wikipedia page for Virtual machine
↑ Return to Menu